
[544] Cassandra Replication
Tyler Caraza-Harter

Learning Objectives

• walk a token ring (in Cassandra, or other consistent hashing
implementation) to identify multiple nodes responsible for a
given row (while potentially skipping duplicate nodes in the
same "failure domain")

• tune read/write quorum requirements to achieve desired
tradeoffs in availability, durability, and performance

• describe common approaches to eventual consistency and
conflict resolution

Outline

Replication

Quorum Reads/Writes

Conflict Resolution

Cassandra Demos

Replication

create keyspace X 
with replication={'class': 'SimpleStrategy', 
 'replication_factor': 2};

create keyspace Y 
with replication={'class': 'SimpleStrategy', 
 'replication_factor': 3};

We replicate (create multiple copies on different nodes) to improve
durability -- meaning we don't want data to be lost when nodes die.

Cassandra lets us choose a different RF
(replication factor) for each keyspace:

Replication Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

node1 node2 node3workers: node3 node2node1

create keyspace X 
with replication={'class': 'SimpleStrategy', 
 'replication_factor': 2};

create keyspace Y 
with replication={'class': 'SimpleStrategy', 
 'replication_factor': 3};

node4node4

row in a table in X
nodes: 4, 2

walk until we get
enough nodes

Replication Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

node1 node2 node3workers: node3 node2node1

create keyspace X 
with replication={'class': 'SimpleStrategy', 
 'replication_factor': 2};

create keyspace Y 
with replication={'class': 'SimpleStrategy', 
 'replication_factor': 3};

node4node4

row in a table in Y
nodes: ????

Replication Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

node1 node2 node3workers: node3 node2node1

create keyspace X 
with replication={'class': 'SimpleStrategy', 
 'replication_factor': 2};

create keyspace Y 
with replication={'class': 'SimpleStrategy', 
 'replication_factor': 3};

node4node4

row in a table in Y
nodes: 3, 1, 2

Replication Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

node1 node2 node3workers: node3 node2node1

create keyspace X 
with replication={'class': 'SimpleStrategy', 
 'replication_factor': 2};

create keyspace Y 
with replication={'class': 'SimpleStrategy', 
 'replication_factor': 3};

node4node4

row in a table in Y
nodes: ????

Replication Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

node1 node2 node3workers: node3 node2node1 node4node4

row in a table in Y
nodes: 4, 3, 2

Important! Keeping multiple copies on vnodes on the same node
provides little safety (when a node dies, all its vnodes die). Same
"failure domain".

Cassandra can skip nodes as it "walks the ring".

Network Infrastructure

https://buy.hpe.com/us/en/servers/proliant-dl-servers/proliant-dl10-servers/proliant-dl20-server/hpe-proliant-dl20-gen10-plus-e-2336-2-9ghz-6-core-1p-16gb-u-4sff-500w-rps-server/p/p44115-b21?ef_id=Cj0KCQiAt66eBhCnARIsAKf3ZNFJsg49UV6Zm33R7lkRqi-XOd_JECmdyqNMAm2CKLSm_F-
z6JTYDTQaAgMTEALw_wcB:G:s&s_kwcid=AL!13472!3!331628972784!!!g!318267171339!!1707918369!67076417419&gclsrc=aw.ds&gclid=Cj0KCQiAt66eBhCnARIsAKf3ZNFJsg49UV6Zm33R7lkRqi-XOd_JECmdyqNMAm2CKLSm_F-z6JTYDTQaAgMTEALw_wcB

https://www.server-rack-online.com/gl910ent-4048sss.html?
utm_medium=shoppingengine&utm_source=googlebase&utm_source=google&utm_medium=cpc&adpos=&scid=scplpgl910ent-4048sss&sc_intid=gl910ent-4048sss&gclid=Cj0KCQiAt66eBhCnARIsAKf3ZNEMYlNPAA0RFGQIF0DsieCM6oh7i3kuJvJIpnmJAlOpAJ3RWT11QMAaAqRnEALw_wcB

https://www.dotmagazine.online/issues/digital-infrastructure-and-transforming-markets/data-center-models

Server

Data Center

Rack

Correlated Failures

https://buy.hpe.com/us/en/servers/proliant-dl-servers/proliant-dl10-servers/proliant-dl20-server/hpe-proliant-dl20-gen10-plus-e-2336-2-9ghz-6-core-1p-16gb-u-4sff-500w-rps-server/p/p44115-b21?ef_id=Cj0KCQiAt66eBhCnARIsAKf3ZNFJsg49UV6Zm33R7lkRqi-XOd_JECmdyqNMAm2CKLSm_F-
z6JTYDTQaAgMTEALw_wcB:G:s&s_kwcid=AL!13472!3!331628972784!!!g!318267171339!!1707918369!67076417419&gclsrc=aw.ds&gclid=Cj0KCQiAt66eBhCnARIsAKf3ZNFJsg49UV6Zm33R7lkRqi-XOd_JECmdyqNMAm2CKLSm_F-z6JTYDTQaAgMTEALw_wcB

https://www.server-rack-online.com/gl910ent-4048sss.html?
utm_medium=shoppingengine&utm_source=googlebase&utm_source=google&utm_medium=cpc&adpos=&scid=scplpgl910ent-4048sss&sc_intid=gl910ent-4048sss&gclid=Cj0KCQiAt66eBhCnARIsAKf3ZNEMYlNPAA0RFGQIF0DsieCM6oh7i3kuJvJIpnmJAlOpAJ3RWT11QMAaAqRnEALw_wcB

https://www.dotmagazine.online/issues/digital-infrastructure-and-transforming-markets/data-center-models

Server

Data Center

Rack

"customers should be able to view
and add items to their shopping

cart even if disks are failing, network
routes are flapping, or data centers
are being destroyed by tornados"

~ authors of first Dynamo paper

Whole-rack problems:
• top-of-rack switch fails
• rack's power supply fails

One server goes down, all of its
vnodes are gone.

Replication Policy

Cassandra replication strategies are "pluggable", with a couple
built-in options.

SimpleStrategy
• all nodes are considered equal
• skips vnodes on same machine
• ignores rack and data center placement
• used in CS 544

NetworkTopologyStrategy
• considers data centers and racks
• when walking the ring, some vnodes may be skipped to protect against

various kinds of correlated failure

Worksheet

Outline

Replication

Quorum Reads/Writes

Conflict Resolution

Cassandra Demos

Write Acks: WhatsApp Example

https://faq.whatsapp.com/665923838265756

these are examples of "acks" (acknowledgements)

In distributed storage systems/databases, an ack means our data is committed.

"Committed" means our data is "safe", even if bad things happen. The definition
varies system to system, based on what bad things are considered. For example:

• a node could hang until rebooted; a node's disk could permanently fail
• a rack could lose power; a data center could be destroyed

Obviously, no data is ever completely safe against any circumstance (e.g., comet
strikes earth, leading to destruction of humankind and all our data centers).

Write Acks: WhatsApp Example

https://faq.whatsapp.com/665923838265756

these are examples of "acks" (acknowledgements)

In distributed storage systems/databases, an ack means our data is committed.

"Committed" means our data is "safe", even if bad things happen. The definition
varies system to system, based on what bad things are considered. For example:

• a node could hang until rebooted; a node's disk could permanently fail
• a rack could lose power; a data center could be destroyed

Obviously, no data is ever completely safe against any circumstance (e.g., comet
strikes earth, leading to destruction of humankind and all our data centers).

stronger definition: all devices
(in case one device fails)

Write Acks: WhatsApp Example

https://faq.whatsapp.com/665923838265756

these are examples of "acks" (acknowledgements)

two checks (in WhatsApp) mean the message reached the destination.

Does only one check mean the message has NOT reached the destination?

Write Acks: WhatsApp Example

https://faq.whatsapp.com/665923838265756

these are examples of "acks" (acknowledgements)

two checks (in WhatsApp) mean the message reached the destination.

Does only one check mean the message has NOT reached the destination?

message message

ack

scenario 1 scenario 2

Cassandra Writes

node1 node2 node3

coordinatorclient

5 A 3 X 5 A 3 X 5 A 3 X

5 B

Say RF=3. Coordinator will attempt to write data to all 3 replicas.

Cassandra Writes

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

5 B

Say RF=3. Coordinator will attempt to write data to all 3 replicas.

rebooting...

At what point should we send an ack to the client?

ack ack

Cassandra Writes

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

5 B

Say RF=3. Coordinator will attempt to write data to all 3 replicas.

rebooting...

At what point should we send an ack to the client?
Configurable. W=2 lets coordinator ack now, and data is fairly safe.

ack ack

ack

Cassandra Reads

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

HDFS reads go to one replica. What if Cassandra tries that?

read

????

Cassandra Reads

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

HDFS reads go to one replica. What if Cassandra tries that?

old
data

Cassandra Reads

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

Read from R replicas (configurable). Here R=2.
Hopefully at least one of the replicas has new data.

Cassandra Reads

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

data data

R=2 means we'll often read identical data from two replicas (wasteful!)

Cassandra Reads

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

R=2 means we'll often read identical data from two replicas (wasteful!)

Improvement: read one copy, and only request checksum from others.

A checksum (like md5) is a hash function where collisions are extremely rare and hard to find.

checksum(data) data

When R+W > RF

node1 node2 node3

5 B 3 X 5 B 3 X 5 A 3 X

When R+W > RF, the replicas read+written will overlap.

There are some caveats (related to ring membership and
something called "hinted handoff") not covered in 544.

RF=3

W=2

R=2

Tuning R and W

Say RF=3

W=3, R=1
• reads are highly available and fast -- only need one replica to respond before

we can get back to the client!
• writes will not succeed (from the client's perspective) if even one node is

down. But the data may still get recorded on some nodes.

W=1, R=3
• writes are highly available and fast -- only need one replica to respond before

we can get back to the client!
• reads will not return data when even one node is down.
• risky: if the one node that took the write fails permanently, we'll lose

committed data

W=2, R=2
• relatively balanced approach

W=1, R=1
• speed+availability more important that correct data

Worksheet

Outline

Replication

Quorum Reads/Writes

Conflict Resolution

Cassandra Demos

Getting Conflicting Versions

node1 node2 node3

coordinatorclient

5 A 3 X 5 A 3 X 5 A 3 X

5 B

Let RF=3, R=2, W=2

Getting Conflicting Versions

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

5 B

rebooting...

Let RF=3, R=2, W=2

Getting Conflicting Versions

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

Let RF=3, R=2, W=2

Getting Conflicting Versions

node1 node2 node3

5 B 3 Y 5 B 3 X 5 A 3 Y

coordinatorclient

5 Y

rebooting...

Let RF=3, R=2, W=2

Getting Conflicting Versions

node1 node2 node3

5 B 3 Y 5 B 3 X 5 A 3 Y

coordinatorclient

Let RF=3, R=2, W=2

Getting Conflicting Versions

node1 node2 node3

5 B 3 Y 5 B 3 X 5 A 3 Y

coordinatorclient

Which version of row 5 should be sent back? 
Both contain some new data not contained by other.

Systems that allow conflicting versions to co-exist,
fixing it up later are "eventually consistent"

coordinatorclient

datadata

rebooting...

Getting Conflicting Versions

node1 node2 node3

5 B 3 Y 5 B 3 X 5 A 3 Y

coordinatorclient

Approaches:
• send all version back to the client, which will need specialized conflict resolution code
• automatically combine them into a new row, and write that (if possible to all replicas)

Dynamo supports both. Cassandra uses second approach.

coordinatorclient

datadata

rebooting...

Timestamps

node1 node2 node3

5 B 3 Y 5 B 3 X 5 A 3 Y

coordinator

Every cell of every table has a timestamp:
• approximate (since clocks of nodes in a cluster are never perfectly in sync)
• policy is LWW (last writer wins), meaning prefer newer data
• Cassandra lets you query the timestamp of each cell

coordinator

datadata

rebooting... 95 23
3 95 95 95 95 95 55
2

5 B 3 Y

95 23
3 95 55
2

Outline

Replication

Quorum Reads/Writes

Conflict Resolution

Cassandra Demos

