
[544] Kafka Streaming
Tyler Caraza-Harter

Learning Objectives

• describe the benefits of using streaming for ETL (extract
transform load) work

• write code for Kafka consumers and producers in order to
interact with topic data that stored by brokers

• scale out brokers and consumers by configuring
topic partitions and consumer groups, respectively

Outline: Kafka Streaming

Sending/Receiving Messages
• RPC (Remote Procedure Calls)
• Streaming

ETL (Extract Transform Load)

Kafka Design

Procedure Calls

counts = {
 "A": 123, ...
}

def increase(key, amt):
 counts[key] += amt
 return counts[key]

curr = increase("A", 5)
print(curr) # 128

what if we want many programs running
on different computers to have access to

this dict and the increase function?

Remote Procedure Calls (RPCs)

curr = increase("A", 5)
print(curr) # 128

counts = {
 "A": 123, ...
}

def increase(key, amt):
 counts[key] += amt
 return counts[key]

client server

client

...

move counts and increase to a server
accessible to many client programs on

different computers

Remote Procedure Calls (RPCs)

def increase(key, amt):
 ...code to send

curr = increase("A", 5)
print(curr) # 128

def rpc_server():
 ...code to receive

counts = {
 "A": 123, ...
}

def increase(key, amt):
 counts[key] += amt
 return counts[key]

client server

need some extra functions to make calling a remote
function feel the same as calling a regular one

computer 1 computer 2

Remote Procedure Calls (RPCs)

def increase(key, amt):
 ...code to send

curr = increase("A", 5)
print(curr) # 128

def rpc_server():
 ...code to receive

counts = {
 "A": 123, ...
}

def increase(key, amt):
 counts[key] += amt
 return counts[key]

client serverrequest
message

response
message

computer 1 computer 2

Serialization/Deserialization

def increase(key, amt):
 ...code to send

curr = increase("A", 5)
print(curr) # 128

def rpc_server():
 ...code to receive

counts = {
 "A": 123, ...
}

def increase(key, amt):
 counts[key] += amt
 return counts[key]

client server

request
message

response
message

computer 1 computer 2

args somehow encoded as bytes:
b'{"key": "A"
 "amt": 5}'

return val as bytes:
b'5'

serialize deserialize

serializedeserialize

gRPC uses protocol buffers for wire format

def increase(key, amt):
 ...code to send

curr = increase("A", 5)
print(curr) # 128

def rpc_server():
 ...code to receive

counts = {
 "A": 123, ...
}

def increase(key, amt):
 counts[key] += amt
 return counts[key]

client server

request
message

response
message

computer 1 computer 2

protobuf (args to bytes)
b'1001000101011111'
(contains "A" and 5)

protobuf (ret val to bytes)
b'01000000'
(contains 128)

serialize deserialize

serializedeserialize

Synchronous vs. Asynchronous Communication

Synchronous
• both parties have to participate at the same time
• examples: phone call, RPC call

Asynchronous
• one party can send any time, the other can receive later
• examples: email, texting, streaming

client server

producer broker consumer

msg

msg msg
msg

Outline: Kafka Streaming

Sending/Receiving Messages

ETL (Extract Transform Load)
• Batch
• Streaming

Kafka Design

Extract Transform Load (ETL)

OLTP (online
transaction processing)

Database 1

row1,row2,row3,...

row-oriented storage:

OLTP (online
transaction processing)

Database 2

row1,row2,row3,...

row-oriented storage:

OLAP (online analytics
processing)

Database 3

col1,col2,col3,...

col-oriented storage:etl-1.py

etl-2.py

ETL Code
• needs to detect what is new (e.g., by timestamp)
• cron: Linux program to run programs on a schedule
• Google's cloud scheduler can similarly launch tasks

(other clouds have similar options)

data warehouse

issue 1: data freshness

Extract Transform Load (ETL)

OLTP (online
transaction processing)

Database 1

row1,row2,row3,...

row-oriented storage:

OLTP (online
transaction processing)

Database 2

row1,row2,row3,...

row-oriented storage:

OLAP (online analytics
processing)

Database 3

col1,col2,col3,...

col-oriented storage:etl-1.py

etl-2.py
data warehouse

some parquet files

used by MapReduce,
Spark, etc.

HDFS

etl-3.py

etl-4.py

data lake

if we have X OLTP databases and Y derivative stores, how many ETL programs must we write?

issue 2: scaling engineering effort

Too much ETL...

https://engineering.linkedin.com/distributed-systems/log-what-every-
software-engineer-should-know-about-real-time-datas-unifying

image from blog

Don't want data transfer between every pair of DB/services
• Jay Krepps helped build Kafka at LinkedIn
• Later co-founded Confluent (Kafka-based company)
• Partners with cloud providers to provide Kafka as a

service

https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

Unified Log

https://engineering.linkedin.com/distributed-systems/log-what-every-
software-engineer-should-know-about-real-time-datas-unifying

image from blog

Centralize changes in a distributed logging service
• Many writers (called producers)
• Many readers (called consumers)

Data is constantly flowing, so ETL can be done in realtime
(instead of batch jobs with cron)

https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

Outline: Kafka Streaming

Sending/Receiving Messages

ETL (Extract Transform Load)

Kafka Design
• Topics
• Producers, Consumers, Brokers
• Scalability with Partitioning

Topics

weather

politics

sports

msg

Kafka topics (managed by
servers called brokers)

msg

msg

admin = KafkaAdminClient(...)
admin.create_topics([NewTopic("sports", ...)])

pip install kafka-python

Producers Publish (pub/sub)

weather

politics

sports

msg

Kafka topics (managed by
servers called brokers)

msg

msg

producer1

producer3

producer3 = KafkaProducer(...)
producer3.send("sports", ...)

msg

producer2

producers
(code you write)

Consumers Subscribe (pub/sub)

weather

politics

sports

msg

Kafka topics (managed by
servers called brokers)

msg

msg

producer1

producer3

consumer3 = KafkaConsumer(...)
consumer3.subscribe(["sports"])

producer2

consumer2

consumer3

consumer4

consumer1

msg

producers
(code you write)

consumers
(code you write)

Receiving Messages

weather

politics

sports

msg

Kafka topics (managed by
servers called brokers)

msg

msg

producer1

producer3

consumer3 = KafkaConsumer(...)
while True:
 batch = consumer3.poll(????)
 for topic, messages in batch.items():
 for msg in messages:
 ...

producer2

consumer2

consumer3

consumer4

consumer1

msg

producers
(code you write)

consumers
(code you write)

msg

msg
msg

poll() loop
• generally runs forever
• poll (ideally) returns some messages the consumer

hasn't seen before, from any subscribed topic
• leaves messages intact on brokers (for other

consumers), unlike many prior streaming systems

What's in a Message?
Message parts

• key (optional): some bytes
• value (required): some bytes
• other stuff...

producer.send("topic", value=????)
OR
producer.send("topic", value=????, key=????)

Common usage: the value is usually some kind of structure with many values. The key is
used for partitioning and is usually one of the entries in the value structure.

Python dict => bytes:

d = {...}
value = bytes(json.dumps(d), "utf-8")

Protobuf => bytes:

msg = mymod_pb2.MyMessage(...)
value = msg.SerializeToString() # actually bytes, not str

clicks (topic) msg

Scaling the Brokers

purchases (topic)

msg

Kafka topics (managed by
servers called brokers)

msg

producer1

producer3

producer2

producers
(code you write)

msg

msg

msg

producer4

producer5

msg

msg
msg

msg

broker server

problem: some topics might have too many messages for one
machine (or set of machines with replicas) to keep up

consumers
(code you write)

...

Partitions

purchases[0]

Kafka topics (managed by
servers called brokers)

producer1

producer3

producer2

producers
(code you write)

msg

producer4

producer5

broker server

msg msg msg

5 6 7

clicks[1] msg msg msg

0 1 2

msg

3

clicks[0]

broker server

msg msg msg

0 1 2

clicks[2] msg msg msg

0 1 2

msg

3

msg msg

3 4
msg

Topics can be created with N partitions
• each partition is like an array of messages
• partitions are assigned to brokers
• each producer using a stream works with all partitions

clicks[0]

still 2

append

Changing
Partitions

purchases[0]

Kafka topics (managed by
servers called brokers)

producer1

producer3

producer2

producers
(code you write)

msg

producer4

producer5

broker server

msg msg msg

5 6 7

clicks[1] msg msg msg

0 1 2

msg

3

broker server

msg msg msg

0 1

clicks[2] msg msg msg

0 1 2

msg

3

msg msg

3 4
msg

Changes
• append right
• delete left (depends on "retention" policy)
• delete does NOT change indexes

delete

8

msg

2

Selecting
Partitions

case 1: message only has value
• producer rotates between partitions
• called "round robin" policy

case 2: message has key and value
• calculate partition, for example:

hash(key) % partition_count
• same keys will go to the same partition
• can plug in alternative partitioning schemes

purchases[0]

Kafka topics (managed by
servers called brokers)

producer1

producer3

producer2

producers
(code you write)

msg

producer4

producer5

broker server

msg msg msg

5 6 7

clicks[1] msg msg msg

0 1 2

msg

3

clicks[0]

broker server

msg msg msg

0 1 2

clicks[2] msg msg msg

0 1 2

msg

3

msg msg

3 4
msg

Consumers: Read Offsets

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

clicks[3] O P Q

0 1 2

R

3

consumer

offset

clicks[0] 2

clicks[1] 1

clicks[2] 4

clicks[3] 3

batch = consumer.poll(1000)
for topic, messages in batch.items():
 print("partiton", topic.partition)
 for msg in messages:
 print(msg.value)

Topic Partitions

Batches
• poll returns batches (when enough data or timeout)
• batches contain some subset of partitions
• some number of messages in partition, starting at

offset

Example 1

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

clicks[3] O P Q

0 1 2

R

3

consumer

offset

clicks[0] 4

clicks[1] 1

clicks[2] 4

clicks[3] 3

batch = consumer.poll(1000)
for topic, messages in batch.items():
 print("partiton", topic.partition)
 for msg in messages:
 print(msg.value)

output:
partition 0
b'C'
b'D'

Topic Partitions

Batches
• poll returns batches (when enough data or timeout)
• batches contain some subset of partitions
• some number of messages in partition, starting at

offset

Example 2

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

Batches
• poll returns batches (when enough data or timeout)
• batches contain some subset of partitions
• some number of messages in partition, starting at

offset

clicks[3] O P Q

0 1 2

R

3

consumer

offset

clicks[0] 2

clicks[1] 5

clicks[2] 4

clicks[3] 4

batch = consumer.poll(1000)
for topic, messages in batch.items():
 print("partiton", topic.partition)
 for msg in messages:
 print(msg.value)

output:
partition 1
b'F'
b'G'
b'H'
b'I'
partition 3
b'R'

Topic Partitions

Example 3

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

Batches
• poll returns batches (when enough data or timeout)
• batches contain some subset of partitions
• some number of messages in partition, starting at

offset

clicks[3] O P Q

0 1 2

R

3

consumer

offset

clicks[0] 2

clicks[1] 2

clicks[2] 4

clicks[3] 3

batch = consumer.poll(1000)
for topic, messages in batch.items():
 print("partiton", topic.partition)
 for msg in messages:
 print(msg.value)

output:
partition 1
b'F'

Topic Partitions

Partially vs. Totally Ordered

Some things are totally ordered, like integers. Either x < y or y >= x.

Other things are partially ordered, like git commits. Sometimes you can
compare, sometimes you can't!

A < B A < C D < E ...

Can't compare B and C
Can't compare D and F
...

A

B

C

D

E

F

Ordering Kafka Messages

Kafka Messages are partially ordered. Messages are consumed from a
partition in the order they were written to that partition (no guarantees
across topics or across partitions).

If A and B share the same topic and key, and B was produced after A, then:
• we say B "happened after" A
• A and B will be in the same partition (assuming partition count is constant)
• each consumer group of the topic will consume A before B

Choose your key carefully! Try to create enough partitions initially and never
change it (hash partitioning isn't elastic).

No keys specified => no guarantee about what order messages are
consumed.

Seek to an Offset

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

Read pattern
• consumers normally read forward sequentially
• seek can jump back (or ahead)
• useful if processing batch failed:

just go back and retry

clicks[3] O P Q

4 5 6

R

7

consumer

offset

clicks[0] 2

clicks[1] 1

clicks[2] 4

clicks[3] 7 6

part = TopicPartition("clicks", 3)
offset = 6
consumer.seek(part, offset)

Topic Partitions

Consumer Groups

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

clicks[3] O P Q

0 1 2

R

3

consumer 2

g1 offsets g2 offsets

clicks[0] 2 3

clicks[1] 1 2

clicks[2] 4 4

clicks[3] 3 3

consumer 1
consumer

group 1 (g1)

consumer
group 2 (g2)

Groups
• different applications might operate independently
• they should ALL get a chance to consume messages
• need offsets for each topic/partition/consumer

group combination

c = KafkaConsumer("clicks",
 group_id="g1",
 ...)
batch = c.poll(1000)
...

Topic Partitions

Consumer Groups

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

clicks[3] O P Q

0 1 2

R

3

consumer 2

g1 offsets g2 offsets

clicks[0] 2 3

clicks[1] 1 2

clicks[2] 4 4

clicks[3] 3 3

consumer 1
consumer

group 1 (g1)

consumer
group 2 (g2)

Groups
• different applications might operate independently
• they should ALL get a chance to consume messages
• need offsets for each topic/partition/consumer

group combination

c = KafkaConsumer("clicks",
 group_id="g1",
 ...)
batch = c.poll(1000)
...

g1 g2

Topic Partitions

Consumer Groups

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

clicks[3] O P Q

0 1 2

R

3

consumer 2

g1 offsets g2 offsets

clicks[0] 2 3

clicks[1] 1 2

clicks[2] 4 4

clicks[3] 3 4

consumer 1
consumer

group 1 (g1)

consumer
group 2 (g2)

Groups
• different applications might operate independently
• they should ALL get a chance to consume messages
• need offsets for each topic/partition/consumer

group combination

c = KafkaConsumer("clicks",
 group_id="g1",
 ...)
batch = c.poll(1000)
...

g1 g2

R

Topic Partitions

Consumer Groups

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

clicks[3] O P Q

0 1 2

R

3

consumer 2

g1 offsets g2 offsets

clicks[0] 2 3

clicks[1] 1 2

clicks[2] 4 4

clicks[3] 4 4

consumer 1
consumer

group 1 (g1)

consumer
group 2 (g2)

Groups
• different applications might operate independently
• they should ALL get a chance to consume messages
• need offsets for each topic/partition/consumer

group combination

c = KafkaConsumer("clicks",
 group_id="g1",
 ...)
batch = c.poll(1000)
...

g1 g2

R

Topic Partitions

Partition Assignment: Manual

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

clicks[3] O P Q

0 1 2

R

3

consumer 2

g1 offsets g2 offsets

clicks[0] 2 3

clicks[1] 1 2

clicks[2] 4 4

clicks[3] 4 4

consumer 1
consumer

group 1 (g1)

consumer
group 2 (g2)

Topic Partitions

consumer 3

g1 assignment g2 assignment

clicks[0] consumer 1 consumer 2

clicks[1] consumer 1 consumer 2

clicks[2] consumer 1 consumer 3

clicks[3] consumer 1 consumer 3

partition offsets, per group partition assignments, per group

tp0 = TopicPartition("clicks", 0)
...
consumer2.assign([tp0, tp1])
consumer3.assign([tp2, tp3])

Partition Assignment: Automatic

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

clicks[3] O P Q

0 1 2

R

3

consumer 2

consumer
group 2 (g2)

Topic Partitions

consumer 3

consumer 4

g1 assignment g2 assignment

clicks[0] consumer 1 consumer 2

clicks[1] consumer 1 consumer 2

clicks[2] consumer 1 consumer 3

clicks[3] consumer 1 consumer 3

partition assignments, per group

consumer 3: subscribed to clicks
while True:

batch = consumer.poll(1000)
for topic, msgs in batch.items():
 for msg in msgs:
 ...

consumer.close()

Assignment and re-assignment
• by default, consumers are automatically assigned

partitions when they start polling
• challenge: Kafka shouldn't re-assign a partition in the

middle of a batch (might double process messages)

Partition Assignment: Automatic

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

clicks[3] O P Q

0 1 2

R

3

consumer 2

consumer
group 2 (g2)

Topic Partitions

consumer 3

consumer 4

g1 assignment g2 assignment

clicks[0] consumer 1 consumer 2

clicks[1] consumer 1 consumer 2

clicks[2] consumer 1 consumer 3

clicks[3] consumer 1 consumer 3

partition assignments, per group

consumer 3: subscribed to clicks
while True:

batch = consumer.poll(1000)
for topic, msgs in batch.items():
 for msg in msgs:
 ...

consumer.close()

Assignment and re-assignment
• by default, consumers are automatically assigned

partitions when they start polling
• challenge: Kafka shouldn't re-assign a partition in the

middle of a batch (might double process messages)

best to take away
a partition at
these points

Partition Assignment: Automatic

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

clicks[2] J K L

0 1 2

M

3

H I

3 4

clicks[3] O P Q

0 1 2

R

3

consumer 2

consumer
group 2 (g2)

Topic Partitions

consumer 3

consumer 4

g1 assignment g2 assignment

clicks[0] consumer 1 consumer 2

clicks[1] consumer 1 consumer 2

clicks[2] consumer 1 consumer 3

clicks[3] consumer 1 consumer 4

partition assignments, per group

consumer 3: subscribed to clicks
while True:

batch = consumer.poll(1000)
for topic, msgs in batch.items():
 for msg in msgs:
 ...

consumer.close()

Assignment and re-assignment
• by default, consumers are automatically assigned

partitions when they start polling
• challenge: Kafka shouldn't re-assign a partition in the

middle of a batch (might double process messages)

best to take away
a partition at
these points

Segment Files: Log Rollover and Deletion

broker server

msg msg msg

0 1 2

msg

3

Local File System (on an SSD or HDD)

msg

4

msg msg msg

0 1 2

a partition of a topic a partition of a topic

 segment file segment file segment file
active active

• partitions are divided into consecutive regions and saved in segment files
• all new data is sequentially written to the end of an active segment

Segment Files: Log Rollover and Deletion

broker server

msg msg msg

0 1 2

msg

3

Local File System (on an SSD or HDD)

msg

4

msg msg msg

0 1 2

a partition of a topic a partition of a topic

 segment file segment file segment file
active active

• partitions are divided into consecutive regions and saved in segment files
• all new data is sequentially written to the end of an active segment

msg

5

Segment Files: Log Rollover and Deletion

broker server

msg msg msg

0 1 2

msg

3

Local File System (on an SSD or HDD)

msg

4

msg msg msg

0 1 2

a partition of a topic a partition of a topic

 segment file segment file segment file
active

• rollover: current segment is finalized (no more changes)
• new segment is created and becomes active

msg

5

...
active

msg

6

Segment Files: Log Rollover and Deletion

broker server

msg

3

Local File System (on an SSD or HDD)

msg

4

msg msg msg

0 1 2

a partition of a topic a partition of a topic

 segment file segment file
active

• deletion: old segment is deleted
• always starts from smallest offset
• active segment is NEVER deleted

msg

5

...
active

msg

6

Log Policy

Rollover and retention policies are configurable in Kafka.

Rollover
• setting 1: max segment age (log.roll.hours=7 day by default)
• setting 2: max segment size (log.segment.bytes=1GB by default)
• rollover happens when segment gets too big or too old (whichever happens first)

Retention/Deletion
• setting 1: log age cutoff (log.retention.hours=7 days by default)
• setting 2: log size cutoff (log.retention.bytes=disabled by default)
• deletion happens on oldest segment when log is too big or has records too old
• note: age cutoff applies to newest messages in a segment, so there will probably be

some older ones in the same segment past the cutoff. Not useful for legal compliance
with data retention laws.

https://www.conduktor.io/blog/understanding-kafkas-internal-storage-and-log-retention/

TopHat

