
[544] The Cloud
Tyler Caraza-Harter

Learning Objectives

• recall different things that typically show up on a cloud bill
(for example, different types of network I/O)

• identify PaaS cloud offerings that are similar to the open-
source systems we have been learning this semester

• describe BigQuery's relationship to other systems

Outline
Background

Resources

Billing Models

Platforms

The Beginning
Amazon Web Services (AWS)

• Elastic Compute Cloud (EC2), rented VMs, launched in 2006
• "Infrastructure as as Service" (IaaS) -- rent infrastructure (network, storage,

compute) instead of owning the hardware yourself.

physical machine in a Amazon data center

VM (ec2 instance) VM (ec2 instance)

VM (ec2 instance) VM (ec2 instance)

Ubuntu Linux 22.04 rented by you

"Sometimes you need a lot of processing power, and sometimes you need just a little.
Sometimes you need a lot, but you only need it for a limited amount of time." 
~ Jeff Barr (https://aws.amazon.com/blogs/aws/amazon_ec2_beta/)

https://aws.amazon.com/blogs/aws/amazon_ec2_beta/

VM Hours

Pricing comparison
• one VM for a month: about $25
• about 744 hours/month (31*24)
• 744 VMs for an hour: about $25
• same computation resources
• very different wait time

Be careful!
• programmers previously optimized

when things were too slow
• now we need to optimize when it

is too expensive
• cost is not always obvious at the

moment you're running a job
(need to do "back of the envelope"
estimates until you get a bill)

Other Cloud Services
AWS now has >200 services beyond EC2 (and growing).

IaaS (Infrastructure as a Service)
• EC2, other services that feel closer to raw hardware
• virtual disks, virtual network, some storage systems, etc.
• cheap+flexible -- you can deploy anything on it (Cassandra, Kafka, etc).

PaaS (Platform as as Service)
• Cloud provider has deployed systems on the infracture; you pay to use the

deployed system
• databases, application framework/platforms, ML training/deployment systems
• less flexible, easier to use
• often more expensive (though not necessarily more than doing it yourself due to

effiencies available to cloud provider but not you)

Line between IaaS vs. PaaS distinction is a bit subjective.

Lock In
Customers worry: what if the cloud provider increases the price? If it's hard to move to
a competing cloud, you're "locked in".

PaaS: services are often unique, and it would be hard to move to a different cloud
providers.

IaaS: services like VMs are more uniform -- it would be easier to switch to a different
cloud to find the cheapest place to rent VMs.

Data: cloud providers often make it free to bring data into the cloud (ingress) but
expensive to take it out (egress).

Major Cloud Providers Today

https://www.srgresearch.com/articles/q3-cloud-spending-up-over-11-billion-
from-2021-despite-major-headwinds-google-increases-its-market-share

AWS

Azure

GCP

https://www.srgresearch.com/articles/q3-cloud-spending-up-over-11-billion-from-2021-despite-major-headwinds-google-increases-its-market-share

Numerous Regions Globally (GCP in 2023)

https://cloud.google.com/about/locations#regions

Outline
Background

Resources

Billing Models

Platforms

Compute - Memory - Storage - Network

can choose number
and type of GPUs

this VM is ~$400/month (or $0.50/hour)can choose number
of vCPUs

Google offers TPUs (tensor
processing units) -- custom
hardware for ML. Works

with PyTorch and TensorFlow

Compute - Memory - Storage - Network

https://cloud.google.com/compute/docs/nodes/sole-tenant-nodes

Forms in which to buy compute
• VMs on multi-tenant hosts (typical case)
• VMs on sole-tenant hosts (better isolation/security, $1000s/month)
• Containers (Kubernetes Engine)
• Serverless Functions (functions run when events happen; pay by the millisecond)

IaaS
• memory is often roughly proportional to CPU resources
• "memory optimized" VMs skew heavy on RAM 

(very expensive! at high end >10 TB)

PaaS: often open-sources platforms provided as a service. Examples:
• memcached (cache)
• redis (in-memory DB)

Compute - Memory - Storage - Network

Compute - Memory - Storage - Network

Virtual Machines

Virtual Disks

VM VM VM

Disk Disk Disk Disk Disk

on off on

VM disks are virtual block devices
• can be attached, detached, re-attached to VMs
• different disk types offer different performance/price tradeoffs
• HDD (standard); SSD (balanced, SSD, extreme)
• price depends on size and type

cost when running

cost when off (or VM
only deleted)

HDD SSD SSD
(extreme)

HDDSSD
(balanced)

VM creation:

Compute - Memory - Storage - Network

VM

VM

region 1

region 2

zone A zone B

VM

VM

Cloud hierarchy
• continents (approximate)
• regions (data center consisting of 1 or more nearby buildings)
• zone (area of region with fast interconnect but usually common points of failure,

like power, routers, etc)

Compute - Memory - Storage - Network

Image from Best Practices for Running Apache Cassandra on Amazon EC2
(https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-cassandra-on-amazon-ec2/)

Fault tolerance
• deploy under the assumption that nodes in the same zone may reasonably all go

down together (e.g., due to power loss)
• being extra careful: assume a region can go down (e.g., tornado destroys couple

buildings)

Compute - Memory - Storage - Network

VM

VM

region 1

region 2

zone A zone B

VM

VM

Clouds generally bill per GB of network I/O
• ingress is usually free (incentivize you to start using the service, charge to move

your data elsewhere
• egress rate is complicated (depends on many factors)

egress

ingress

Compute - Memory - Storage - Network

VM

VM

region 1

region 2

Internet

Egress examples (ballpark for GCP in 2023, but very simplified):
• Internet: $0.085/GB
• Same continent: $0.05/GB (Asia)
• Same region: $0.01/GB
• Same zone: free

zone A zone B

VM same
zone

same
continent

same
region

VM

TopHat

Outline
Background

Resources

Billing Models

Platforms

Free Tier, Discounts at Scale (AWS Lambda Example)

https://aws.amazon.com/
lambda/pricing/

"The AWS Lambda free tier
includes one million free
requests per month and
400,000 GB-seconds of

compute time per month"

total usage

unit price

common billing model pattern

free
tier

recommendation: estimate your
expenses when you hit this point

"Duration is calculated from the time
your code begins executing until it
returns or otherwise terminates,

rounded up to the nearest 1 ms*"

recommendation: check if you
have a large number of small
ops getting rounded up

On-Demand vs. Spot Instances

time of day

usage

night

day's peak
evening

machines

capacity/utilization for a region

physical capacity

How to create incentatives for customers?
• use less at peak time
• use more at low times

Two VM deployment options
• on-demand instances: constant (high) price. Can generally get a VM. Won't be

taken away from your arbitrarily. Used when capacity is needed at specific times.
• spot instances: price varies throughout day. If you're not willing to pay enough,

your computation waits for a cheaper price. VM might be interrupted
("preempted") once started. Excellent for once-a-day batch jobs.

wasted capacity (unsold)

Scaling and Billing many (most?) VMs are mostly idle

but you pay the same rate for your VM based on the
configuration, regardless of how you actually you the VM

Models
• fixed: you configure what you want, then pay a constant amount. Low risk, often

wasteful, doesn't handle unexpected bursts. Example: VM instances.
• auto scaling: the cloud service detects high/low load and automatically increases/

decreases your reservation. Often cannot scale to zero. Example: Elastic Beanstalk
• pay as you go: pay for actual resources consumed with fine granularity. Example:

AWS Lambda.

Outline
Background

Resources

Billing Models

Platforms

Review: Google Architecture (early systems)

GFS: Google File System (2003 paper)

MapReduce (2004 paper) BigTable (2006 paper)

radical idea: base everything on lots of cheap, commodity hardware

hard
disk
drive

hard
disk
drive

hard
disk
drive

hard
disk
drive

DataNode DataNode DataNode DataNode

Local FS Local FS Local FS Local FS

Google (Papers) => Hadoop (open-source software)

hard
disk
drive

hard
disk
drive

hard
disk
drive

hard
disk
drive

HDFS

Hadoop MapReduce HBase

DataNode DataNode DataNode DataNode

Local FS Local FS Local FS Local FS

Systems both within the Google ecosystem and
Hadoop ecosystem have been evolving a LOT.

hard
disk
drive

hard
disk
drive

Cassandra

Worker Worker

Local FS Local FS

hard
disk
drive

hard
disk
drive

HDFS

Spark

DataNode DataNode

Local FS Local FS

HDFS - Spark - Cassandra - Kafka

Kafka

transactions processing
(applications) pub/sub

analytics processing

major systems we used this semester
(this shows one possible way they could relate to each other)

what might we use instead of these Hadoop
systems if we're using cloud services?

hard
disk
drive

hard
disk
drive

Cassandra

Worker Worker

Local FS Local FS

hard
disk
drive

hard
disk
drive

HDFS

Spark

DataNode DataNode

Local FS Local FS

Kafka

transactions processing
(applications) pub/sub

analytics processing

HDFS - Spark - Cassandra - Kafka

major systems we used this semester
(this shows one possible way they could relate to each other)

Cloud: Colossus

HDFS - Spark - Cassandra - Kafka

Google:

Hadoop:

GFS (Google File System)

HDFS (Hadoop File System)

Colossus File System

GCS (Google Cloud Storage)

Colossus is indirectly available to customers via GCS and other services
• users can create GCS "buckets" containing "objects" (corresponding to files in

Colossus)
• buckets can be public or private

Cloud: Colossus

(avoid single failure point, like a NameNode)

HDFS - Spark - Cassandra - Kafka

Google:

Hadoop:

GFS (Google File System)

HDFS (Hadoop File System)

Colossus File System

GCS (Google Cloud Storage)

Colossus is indirectly available to customers via GCS and other services
• users can create GCS "buckets" containing "objects" (corresponding to files in

Colossus)
• buckets can be public or private
• GCS connector for Hadoop implements HDFS interface over GCS 

(https://github.com/GoogleCloudDataproc/hadoop-connectors/tree/master/gcs)
• Applications (like Spark) can switch out HDFS for GCS

HDFS Interface

anything that normally uses HDFS
Cloud: Colossus

(avoid single failure point, like a NameNode)

https://github.com/GoogleCloudDataproc/hadoop-connectors/tree/master/gcs

hard
disk
drive

hard
disk
drive

Cassandra

Worker Worker

Local FS Local FS

hard
disk
drive

hard
disk
drive

HDFS

Spark

DataNode DataNode

Local FS Local FS

HDFS - Spark - Cassandra - Kafka

Kafka

transactions processing
(applications) pub/sub

analytics processing

major systems we used this semester
(this shows one possible way they could relate to each other)

Cloud: BigQuery

HDFS - Spark - Cassandra - Kafka

Colossus

BigQuery (storage)

BigQuery (query engine)

Cloud: BigQuery

GCS Buckets

Google Sheets
(other sources)HDFS

BigQuery
• similar to Spark SQL
• query engine based on Dremel (2010 system in Google that replaced a lot of

MapReduce work)
• tightly integrated with BigQuery storage engine (that uses Colossus)
• can also run queries on other data sources

HDFS - Spark - Cassandra - Kafka

Colossus

BigQuery (storage)

BigQuery (query engine)

Cloud: BigQuery

GCS Buckets

Google Sheets
(other sources)HDFS

Blurred analytics architecture
• data warehouse: BigQuery query engine with BigQuery storage
• data lake: part of BigQuery used with another system

data lake data warehouse

HDFS - Spark - Cassandra - Kafka

Colossus

BigQuery (storage)

BigQuery (query engine)

Cloud: BigQuery

GCS Buckets

Google Sheets
(other sources)HDFS

Blurred analytics architecture
• data warehouse: BigQuery query engine with BigQuery storage
• data lake: part of BigQuery used with another system

data lake

HDFS - Spark - Cassandra - Kafka

Colossus

BigQuery (storage)

BigQuery (query engine)

Cloud: BigQuery

GCS Buckets

Google Sheets
(other sources)HDFS

Blurred analytics architecture
• data warehouse: BigQuery query engine with BigQuery storage
• data lake: part of BigQuery used with another system

Spark

HDFS - Spark - Cassandra - Kafka

Colossus

BigQuery (storage)

BigQuery (query engine)

Cloud: BigQuery

GCS Buckets

Google Sheets
(other sources)HDFS

Spark

file format...

for analytics, we'll want a column-oriented format...
• Parquet
• ColumnIO
• Capacitor

HDFS - Spark - Cassandra - Kafka
Cloud: BigQuery

protocol buffers (protobufs)
• some protobufs at Google had grown to have 100s of

thousands of columns
• OK for applications/logging, horrible for analysis

protobuf

protobuf

protobuf
...

ro
w

s

ColumnIO

format

col-oriented format

HDFS - Spark - Cassandra - Kafka
Cloud: BigQuery

protocol buffers (protobufs)
• some protobufs at Google had grown to have 100s of

thousands of columns
• OK for applications/logging, horrible for analysis

ColumnIO

format

• Dremel (used in BigQuery) originally used ColumnIO files
• ColumnIO inspired Parquet files (introduced by Twitter+Cloudera) 

https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet

BigQuery
(Dremel)

Colossus inspiration for Parquet

https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet

HDFS - Spark - Cassandra - Kafka
Cloud: BigQuery

Capacitor Format
• sucessor to ColumnIO in Google
• optimized for repeated values

Capacitor

format

BigQuery
(Dremel)

Colossus

column:
apple
apple
apple
banana
banana
apple
apple
apple
apple

HDFS - Spark - Cassandra - Kafka
Cloud: BigQuery

Capacitor Format
• sucessor to ColumnIO in Google
• optimized for repeated values

Capacitor

format

BigQuery
(Dremel)

Colossus

optimization: run-length encoding

column:
3: apple
2: banana
4: apple

HDFS - Spark - Cassandra - Kafka
Cloud: BigQuery

Capacitor Format
• sucessor to ColumnIO in Google
• optimized for repeated values

Capacitor

format

BigQuery
(Dremel)

Colossus

optimization: run-length encoding

column:
3: 1
2: 2
4: 1

optimization: dictionary encoding
{"apple":1

"banana": 2}

TopHat

hard
disk
drive

hard
disk
drive

Cassandra

Worker Worker

Local FS Local FS

hard
disk
drive

hard
disk
drive

HDFS

Spark

DataNode DataNode

Local FS Local FS

HDFS - Spark - Cassandra - Kafka

Kafka

transactions processing
(applications) pub/sub

analytics processing

major systems we used this semester
(this shows one possible way they could relate to each other)

Cloud: BigTable

BigTable
HBase

Cassandra

Dynamo

DynamoDB

data model,
storage layout

partitioning+replication

HDFS - Spark - Cassandra - Kafka
Cloud: BigTable

• BigTable is directly available to customers as a GCP service
• It's now built on Colossus. "The original motivation for building Colossus was to solve scaling

limits we experienced with Google File System (GFS) when trying to accommodate metadata
related to Search. Storing file metadata in BigTable allowed Colossus to scale up by over 100x over
the largest GFS clusters." (https://cloud.google.com/blog/products/storage-data-transfer/a-peek-
behind-colossus-googles-file-system)

Colossus
datameta-

data

BigTable apps HBase apps

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

BigTable
HBase

Cassandra

Dynamo

DynamoDB

partitioning+replication

HDFS - Spark - Cassandra - Kafka
Cloud: BigTable

• Some apps can directly use the BigTable API
• BigTable also supports the similar HBase API now 

(presumably to bring back HBase users who don't want the hassle of deployment, or
of re-writing their code to use a managed cloud service)

Colossus

BigTable apps HBase appsHBase API
HBase apps

data model,
storage layout

hard
disk
drive

hard
disk
drive

Cassandra

Worker Worker

Local FS Local FS

hard
disk
drive

hard
disk
drive

HDFS

Spark

DataNode DataNode

Local FS Local FS

HDFS - Spark - Cassandra - Kafka

Kafka

transactions processing
(applications) pub/sub

analytics processing

major systems we used this semester
(this shows one possible way they could relate to each other)

Cloud: Kafka, actually

HDFS - Spark - Cassandra - Kafka

https://partners.confluent.io/English/directory/search?f0=Partner+Type&f0v0=CSP

• Apache Kafka - open source
• Confluent Kafka - closed source, more features, available as service is the major cloud

providers

https://partners.confluent.io/English/directory/search?f0=Partner+Type&f0v0=CSP

Aside: Open Source Software and Business Models
Open-Source Licenses (very rough overview -- I'm not a lawyer!)

• GPL: if you make improvements and sell/distribute the software, your
code needs to be made open source too

• MIT+BSD: fine to take open source code, make closed-source
improvements, and sell a product based on it. Minimal requirements (e.g.,
related to attribution, liability)

• Apache: similar to MIT and BSD, but relates to patents (not just copyright).

All the major systems we have learned this semester (HDFS, Spark, Cassandra,
Kafka) are distributed under the Apache license. Thus, it is possible to build
companies around closed-source variants of these systems. Examples:

• Databricks (Spark)
• Datastax (Cassandra)
• Confluent (Kafka)

Conclusions
Cloud keeps increasing in importance

• total global revenue
• cloud providers
• number of services for each provider

Compute, memory, storage, and network resources are all rentable.

Even though you pay a markup to the cloud provider, it's often cheaper than
owning your own hardware if your usage fluctuates a lot and most resources
are idle during low times.

