
[544] Cloud Deployment
Tyler Caraza-Harter

Outline
Docker and Beyond

• Containers
• Images

Cloud Services:
• Artifact Registry
• COS (Container-Optimized Operating System)
• GKE (Google Kubernetes Engine)

Review: Processes and Address Spaces

physical memory

0 M
physical addresses

virtual address
spaces

0 N 0 N

Address spaces
• A process is a running program
• Each process has it's own virtual address space
• The same virtual address generally refers to different memory in different processes
• Regular processes cannot directly access physical memory or other addr spaces
• Address spaces can have holes (N is usually MUCH bigger than M)
• Physical memory for a process need not be contiguous

Review: Context Switch

processes

Schedulers
• CPU scheduler is an important sub system in an operating system
• schedulers decide when to context switch between threads
• context swich: change which thread a CPU is running

context switch!
same process, diff thread

context switch!
thread in diff process

Isolation

We don't want different applications running on the same hardware to interefere
with each other -- we want them to be isolated. Concerns:

• malicious programs, buggy programs, fairness.

Ways to interfere
• directly: seeing/modifying data of another process
• indirectly: inflicting bad performance on another process

Some Operating System isolation features with a long history:
• virtual memory: can't see another process's data (namespace isolation)
• schedulers: can't hog the whole CPU (performance isolation)

problem: CPU and memory aren't the only resources

goal: both namespace AND performance isolation for EVERY kind of resource

"Newer" Linux Features: cgroups and Namespaces

cgroup types (performance isolation)
• cpu, memory, cpuacct, cpuset, freezer, net_cls, blkio, perf_event, net_prio,

hugetlb, pids, rdma

namespaces types (performance isolation)
• network, mount, time, user, cgroup, IPC, PID, UTS

Both cgroups and namespaces apply to sets of processes. Configuring all this by
hand is VERY complicated.

One reason Docker is popular : "docker run ..." starts a process using all these
features, each with reasonable configurations.

"Container" definition: set of processes using a
combination of cgroup/namespace/other features.

Kubernetes (k8s)

cgroups and namespaces are very flexible: Docker's approach is just ONE way to
use them to build containers.

process 1 process 2

namespaces: mount, network, etc
cgroups: cpu, memory, etc

process 3 process 4

namespaces: mount, network, etc
cgroups: cpu, memory, etc

process 5

Docker "container"

8 letters

Docker "container"

"mount" is for file system

process 2

namespaces: mount, etc
cgroups: cpu, etc

K8s "container"

process 1

namespaces: network, etc

K8s "pod"

process 2

namespaces: mount, etc
cgroups: cpu, etc

K8s "container"

process 1

namespaces: network, etc

K8s "pod"

process 4

namespaces: mount, etc
cgroups: cpu, etc

K8s "container"

process 3 process 5

Kubernetes (k8s)
8 letters

namespaces: mount, etc
cgroups: cpu, etc

K8s "container"

Flask app

namespaces: network, etc

K8s "pod"

namespaces: mount, etc
cgroups: cpu, etc

K8s "container"

MySQL

Motivation: we often want to deploy multiple applications that "work together"

shared between containers in same pod
• same VM, IP, port visibility

not shared
• CPU/memory resources (etc)
• files (great! each can have their own Linux distro, packages versions, etc)

Container Orchestration

The container orchestrator landscape, by Jordan Webb (https://lwn.net/Articles/905164/)

Kubernetes currently is the most popular container orchestrator. A container
orchestrator can launch many collaborating containers in a cluster (of VMs or
physical machines).

Other orchestrators:
• Docker compose: only launches containers on one node (so not necessarily an

"orchestrator" depending on definition)
• Docker swarm: built from compose to support multiple machines
• Nomad: simpler alternative to Kubernetes

https://lwn.net/Articles/905164/

Outline
Docker and Beyond

• Containers
• Images

Cloud Services:
• Artifact Registry
• COS (Container-Optimized Operating System)
• GKE (Google Kubernetes Engine)

Docker Images
The other reason Docker is very popular is that Dockerfiles can be used to directly build
images. This is a BIG improvement over README files.

FROM ubuntu:22.04
RUN apt-get update; apt-get install -y wget curl openjdk-8-jdk python3-
pip net-tools lsof nano unzip
RUN pip3 install jupyterlab==3.4.5 MarkupSafe==2.0.1 cassandra-driver
pyspark==3.2.2 pandas matplotlib kafka-python grpcio-tools
...

Dockerfile

Setup

This software runs on Ubuntu. First, install Java 8 and Python 3.
Then ...

README.md

Dockerfile Image registry
(e.g., DockerHub)

build push

Open Container Initiative
https://opencontainers.org/

Goal: define standardized formats for images/containers
(integrate with a broader range of tools)

image from OCI site

https://opencontainers.org/

Outline
Docker and Beyond

• Containers
• Images

Cloud Services:
• Artifact Registry
• COS (Container-Optimized Operating System)
• GKE (Google Kubernetes Engine)

Common Cloud Services
Image building (from Dockerfiles)

Image registries (public/private alternative to DockerHub)

Deployment options (from OCI and/or Docker images)
• managed Kubernetes deployment
• containers on operating systems customized for containers
• various serverless platforms (that run code in a container when an event occurs)
• even directly to a VM!

Observation 1: using Dockerfiles to specify requirements is useful beyond containers
(why not use it to specify what you want pre-installed on a VM?).

Observation 2: container images are compatible between Docker and Kubernetes even
though they use cgroups/namespaces differently to isolate running containers.

Examples: Three Google Cloud Services

Artifact Registry

image
push

Cloud Run
(not covered)

deploy

deploy

deploy

GKE (Google
Kubernetes Engine)

GCE (Google
Compute Engine)

1

2

3

container

COS

Outline
Docker and Beyond

• Containers
• Images

Cloud Services:
• Artifact Registry
• COS (Container-Optimized Operating System)
• GKE (Google Kubernetes Engine)

Using Artifact Registry
Artifact Registry come in different varieties for different types of resources

• Docker images, apt packages, Python packages, etc

"docker login" can be used to authenticate to a registry
• Docker Hub lets you type a password
• For GCP, we'll use an "access token"

Getting an access token corresponding to your whole user is overly broad -- create a
service account (basically a non-human user) with limited roles, and use the access token
from that. Security principle of "least priviledge".

To get the access token, we'll prove we can act as the service account with a "key file",
similar to a private SSH key.

Docs: https://cloud.google.com/artifact-registry/docs/docker/authentication

Demos...

http://www.apple.com

Outline
Docker and Beyond

• Containers
• Images

Cloud Services:
• Artifact Registry
• COS (Container-Optimized Operating System)
• GKE (Google Kubernetes Engine)

Container Optimized Operating System (COS)

Container-Optimized OS
• based on Chrome OS
• Docker pre-installed
• Containers launch with VM launch, no extra steps
• locked down for security (if you just need to run containers, you don't need much)

➡ read-only root file system
➡ cannot install packages

VM

COS

Docker

Container Container ...

Demos...

Outline
Docker and Beyond

• Containers
• Images

Cloud Services:
• Artifact Registry
• COS (Container-Optimized Operating System)
• GKE (Google Kubernetes Engine)

Google Kubernetes Engine (GKE)
Google also open-sourced Kubernetes

Billing options (both have cluster management fee of ~$75/month, but free tier covers
one cluster)

• pay for the VMs that run the containers (standard)
• pay for containers (autopilot)

Cluster workers:
• many VMs running COS and managed by Kubernetes

VM (COS)

pod

VM (COS) VM (COS)

Kubernetes: Features

VM (COS)

pod

VM (COS) VM (COS)

pod

replication

VM (COS)

pod

VM (COS) VM (COS)

pod

some_ip:PORT
load balancing

request
request
request

request
request

request

Kubernetes: Features

VM (COS)

pod

VM (COS) VM (COS)

pod pod

fault detection
fault tolerance

Kubernetes: Features

Kubernetes Bin Packing

2

2

1

3

2

2
1

3

where to go?

4 GB VM 4 GB VM

4 GB VM 4 GB VM

good bin
packing

bad bin
packing

Kubernetes will automatically
try to make good "bin

packing" decisions about
where to place containers

Demos

