[544 Locks

Tyler Caraza-Harter

Learning Objectives

» identify critical sections In code
- protect critical sections with locks

* write code that avoids concurrency bugs, such as race
conditions and deadlocks

* use Python packages written in non-Python languages to get
around the GIL (global interpreter lock)

Outline

Crrtical Sections and Locks
Worksheet and Demos

Advanced Topics
* Global Interpreter Lock
* Instruction Reordering and Caching

Critical Sections

1 # in dollars

2 bank accounts = {"x": 25, "y": 100, "z": 200}
3

4 def transfer euros(src, dst, euros):

5 dollars = euros to dollars (euros)

6 success = False

=

8 1f bank accounts[src] >= dollars:

9 bank accounts|[src] -= dollars
10 bank accounts[dst] += dollars
11 success = True
12
13 print ("transferred" 1f success else "denied")

If two threads are calling transfer_euros concurrently, during which lines would a context
switch between those two be problematic?

A section of code we don't want interrupted by certain other code is a

Critical Sections

coJdoOrdWMNHK

in dollars
bank accounts = {"x": 25, "y": 100, "z": 200}

def transfer euros(src, dst, euros):
dollars = euros to dollars (euros)
success = False

1f bank accounts[src] >= dollars:

bank accounts[src] -= dollars | critical section
bank accounts|[dst] += dollars
success = True

print ("transferred" 1f success else "denied")

want wrthdrawal+deposit seen together (never seen half done).
rules (called) like "no account goes negative" must be enforced

Locks

coJdoOrdWMNHK

in dollars
bank accounts = {"x": 25, "y": 100, "z": 200}
lock = threading.Lock () # protects bank accounts
def transfer euros(src, dst, euros):
lock.acquire ()
dollars = euros to dollars (euros)
success = False
1f bank accounts[src] >= dollars:
bank accounts|[src] -= dollars
bank accounts[dst] += dollars
success = True
print ("transferred" 1f success else "denied")
lock.release ()

Lock Rules

between and ,a lockis by the thread that acquired it

a lock may only be held by one thread at a time

it T2 wants to acquire a lock held by T1, T2 blocks until T'| releases it

Locks

1 # in dollars

2 bank accounts = {"x": 25, "y": 100, "z": 200}

3 lock = threading.Lock () # protects bank accounts
4

5 def transfer euros(src, dst, euros):

6 dollars = euros to dollars (euros)

7 success = False

8 lock.acquire ()

9 1f bank accounts[src] >= dollars:
10 bank accounts|[src] -= dollars
11 bank accounts[dst] += dollars
12 success = True
13 lock.release ()
14 print ("transferred" 1f success else "denied")

Tradeoffs

different patterns may accomplish the same goal
some are more efficient; some are simpler

Locks

1 # in dollars

2 bank accounts = {"x": 25, "y": 100, "z": 200}

3 lock = threading.Lock () # protects bank accounts
4

5 def transfer euros(src, dst, euros):

6 dollars = euros to dollars (euros)

7 success = False

8 1f bank accounts[src] >= dollars:

9 lock.acquire ()
10 bank accounts|[src] -= dollars
11 bank accounts[dst] += dollars
12 lock.release ()
13 success = True
14 print ("transferred" 1f success else "denied")

Tradeoffs

different patterns may accomplish the same goal
some are more efficient; some are simpler
be carefull (this incorrect version provides atomicity but not consistency)

Worksheet and Demos...

Outline

Crrtical Sections and Locks
Worksheet and Demos

Advanced Topics
* Global Interpreter Lock
* Instruction Reordering and Caching

Python's GIL (Global Interpreter Lock)

code code
(Python) (C)

Global Interpreter Lock
* Only one thread can be running Python bytecode in a process at once
e Python threads are bad for using multiple cores
* They're still useful for threads blocked on I/O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

code code
(Python) (C)

Global Interpreter Lock
* Only one thread can be running Python bytecode in a process at once
e Python threads are bad for using multiple cores
* They're still useful for threads blocked on I/O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

code code
(Python) (C)

Global Interpreter Lock
* Only one thread can be running Python code In a process at once
e Python threads are bad for using multiple cores
* They're still useful for threads blocked on I/O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

code code
(Python) (C)

Global Interpreter Lock
* Only one thread can be running Python code In a process at once
e Python threads are bad for using multiple cores
* They're still useful for threads blocked on I/O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

code code
(Python) (C)

Global Interpreter Lock
* Only one thread can be running Python code In a process at once
e Python threads are bad for using multiple cores
* They're still useful for threads blocked on I/O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

Global Interpreter Lock
* Only one thread can be running Python code In a process at once
e Python threads are bad for using multiple cores
* They're still useful for threads blocked on I/O
* Some Python libraries using other languages allow parallelism

Why the GIL?

thread |
X = some list
x = None
thread 2
y = that same list
y = None
thread | stack heap
X —>

references=2

thread 2 stack list object

>/ 7

Why the GIL?

thread |
X = some list
x = None
thread 2
y = that same list
y = None
thread | stack heap
X —>

references=1

thread 2 stack list object

object will be freed when references is 0

Why the GIL?

srtuation
thread | * cpython (main Python interpreter) uses reference
X = some list counting internally to know when it can free objects
x = None * implication: multiple threads modifying same integer
4 thread) solutions
y = that same st * run one thread at a time (Python's approach)
y = None * lots of locking (slower for single-threaded code)

* other’
thread | stack heap
X —>

references=1

thread 2 stack list object

Future of GIL

What's New In Python 3.13

Editors: Adam Turner and Thomas Wouters

This article explains the new features in Python 3.13, compared to 3.12. Python 3.13 will be released on
October 1, 2024. For full details, see the changelog.

See also: PEP 719 - Python 3.13 Release Schedule

Summary - Release Highlights

Free-threaded CPython

CPython now has experimental support for running in a free-threaded mode, with the global interpreter lock
(GIL) disabled. This is an experimental feature and therefore is not enabled by default. The free-threaded
mode requires a different executable, usually called python3.13t or python3.13t.exe. Pre-built binaries
marked as free-threaded can be installed as part of the official Windows and macQS installers, or CPython can
be built from source with the ——disable—-gil option.

Free-threaded execution allows for full utilization of the available processing power by running threads in par-
allel on available CPU cores. While not all software will benefit from this automatically, programs designed with
threading in mind will run faster on multi-core hardware. The free-threaded mode is experimental and work

is ongoing to improve it:|lexpect some bugs and a substantial single-threaded performance hit. Free-threaded
builds of CPython support optionally running with the GIL enabled at runtime using the environment variable
PYTHON_GIL or the command-line option -X gil=1.

https://docs.python.org/3. | 3/whatsnew/3. 1 3.html

https://docs.python.org/3.13/whatsnew/3.13.html

Outline

Crrtical Sections and Locks
Worksheet and Demos

Advanced Topics
* Global Interpreter Lock
* Instruction Reordering and Caching

Challenges Beyond Interleaving

import threading

v = 0

ready = False

def task(x):
global y, ready
y = X ** 2
ready = True

t = threading.Thread(target=task, args=[5])
t.start ()
while not ready:
pass
print (y) # want 25 (not 0)

Challenges Beyond Interleaving

import threading

v = 0

ready = False

def task(x):
global y, ready
y = X ** 2 ready = True
ready = True vy = X ** 2

t = threading.Thread(target=task, args=[5])
t.start ()
while not ready:
pass
print (y) # want 25 (not 0)

Challenges Beyond Interleaving

import threading

v =0 core | (running task) core 2 (running main)
ready = False LI cache: LI cache:
y =25 y = 0 (stale)
det task(x): ready = True ready = False (stale)
global y, ready
y = X ** 2
ready = True

t = threading.Thread(target=task, args=[5])
t.start ()

» while not ready:

main pass
print (y) # want 25 (not O0)

Challenges Beyond Interleaving

import threading

v =0 core | (running task) core 2 (running main)
ready = False LI cache: LI cache:
y =25 y = 0 (stale)
def task(x): ready = True ready = True
global y, ready
y = X ** 2
ready = True

t = threading.Thread(target=task, args=[5])
t.start ()
while not ready:

want 25 (not 0)

Concluding Advice

Use provided primitives (like locks+joins) to control isolation+ordering

* these calls control AND (topic beyond 544)
* It's easy to get lockless approaches wrong

Correctness tips (keep it simple to avoid bugs!):
* can you use multiple processes instead of threads!

s one big lock good enough for protecting all your data?
* st OKto hold the lock through a whole function call?

Performance tips:

avoid holding a lock while blocking on /O (network, disk, user input, etc)

it you have multiple updates, can you hold the lock for more than one of them!?
use performant packages like numpy

= the code in C/C++/Fortran/Rust can often run without the GIL
= these will often create threads for you

