
[544] Locks
Tyler Caraza-Harter

Learning Objectives

• identify critical sections in code
• protect critical sections with locks
• write code that avoids concurrency bugs, such as race

conditions and deadlocks
• use Python packages written in non-Python languages to get

around the GIL (global interpreter lock)

Outline
Critical Sections and Locks

Worksheet and Demos

Advanced Topics
• Global Interpreter Lock
• Instruction Reordering and Caching

Critical Sections

in dollars
bank_accounts = {"x": 25, "y": 100, "z": 200}

def transfer_euros(src, dst, euros):
 dollars = euros_to_dollars(euros)
 success = False

 if bank_accounts[src] >= dollars:
 bank_accounts[src] -= dollars
 bank_accounts[dst] += dollars
 success = True

 print("transferred" if success else "denied")

1
2
3
4
5
6
7
8
9

10
11
12
13

If two threads are calling transfer_euros concurrently, during which lines would a context
switch between those two be problematic?

A section of code we don't want interrupted by certain other code is a "critical section"

Critical Sections

in dollars
bank_accounts = {"x": 25, "y": 100, "z": 200}

def transfer_euros(src, dst, euros):
 dollars = euros_to_dollars(euros)
 success = False

 if bank_accounts[src] >= dollars:
 bank_accounts[src] -= dollars
 bank_accounts[dst] += dollars
 success = True

 print("transferred" if success else "denied")

1
2
3
4
5
6
7
8
9

10
11
12
13

Goals:
Atomiticy: want withdrawal+deposit seen together (never seen half done).
Consistency: rules (called "invarants") like "no account goes negative" must be enforced

critical section

Locks

in dollars
bank_accounts = {"x": 25, "y": 100, "z": 200}
lock = threading.Lock() # protects bank_accounts

def transfer_euros(src, dst, euros):
 lock.acquire()
 dollars = euros_to_dollars(euros)
 success = False
 if bank_accounts[src] >= dollars:
 bank_accounts[src] -= dollars
 bank_accounts[dst] += dollars
 success = True
 print("transferred" if success else "denied")
 lock.release()

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Lock Rules
• between acquire and release, a lock is held by the thread that acquired it
• a lock may only be held by one thread at a time
• if T2 wants to acquire a lock held by T1, T2 blocks until T1 releases it

Locks

in dollars
bank_accounts = {"x": 25, "y": 100, "z": 200}
lock = threading.Lock() # protects bank_accounts

def transfer_euros(src, dst, euros):
 dollars = euros_to_dollars(euros)
 success = False
 lock.acquire()
 if bank_accounts[src] >= dollars:
 bank_accounts[src] -= dollars
 bank_accounts[dst] += dollars
 success = True
 lock.release()
 print("transferred" if success else "denied")

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Tradeoffs
• different patterns may accomplish the same goal
• some are more efficient; some are simpler

Locks

in dollars
bank_accounts = {"x": 25, "y": 100, "z": 200}
lock = threading.Lock() # protects bank_accounts

def transfer_euros(src, dst, euros):
 dollars = euros_to_dollars(euros)
 success = False
 if bank_accounts[src] >= dollars:
 lock.acquire()
 bank_accounts[src] -= dollars
 bank_accounts[dst] += dollars
 lock.release()
 success = True
 print("transferred" if success else "denied")

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Tradeoffs
• different patterns may accomplish the same goal
• some are more efficient; some are simpler
• be careful! (this incorrect version provides atomicity but not consistency)

Worksheet and Demos...

Outline
Critical Sections and Locks

Worksheet and Demos

Advanced Topics
• Global Interpreter Lock
• Instruction Reordering and Caching

Python's GIL (Global Interpreter Lock)

code
(Python)

code
(C)

Global Interpreter Lock
• Only one thread can be running Python bytecode in a process at once
• Python threads are bad for using multiple cores
• They're still useful for threads blocked on I/O
• Some Python libraries using other languages allow parallelism

waiting for GIL

waiting for file

Python's GIL (Global Interpreter Lock)

code
(Python)

code
(C)

Global Interpreter Lock
• Only one thread can be running Python bytecode in a process at once
• Python threads are bad for using multiple cores
• They're still useful for threads blocked on I/O
• Some Python libraries using other languages allow parallelism

waiting for file

Python's GIL (Global Interpreter Lock)

code
(Python)

code
(C)

Global Interpreter Lock
• Only one thread can be running Python code in a process at once
• Python threads are bad for using multiple cores
• They're still useful for threads blocked on I/O
• Some Python libraries using other languages allow parallelism

waiting for filewaiting for GIL

Python's GIL (Global Interpreter Lock)

code
(Python)

code
(C)

Global Interpreter Lock
• Only one thread can be running Python code in a process at once
• Python threads are bad for using multiple cores
• They're still useful for threads blocked on I/O
• Some Python libraries using other languages allow parallelism

waiting for GILwaiting for GIL

Python's GIL (Global Interpreter Lock)

code
(Python)

code
(C)

Global Interpreter Lock
• Only one thread can be running Python code in a process at once
• Python threads are bad for using multiple cores
• They're still useful for threads blocked on I/O
• Some Python libraries using other languages allow parallelism

waiting for net

Python's GIL (Global Interpreter Lock)

code
(Python)

code
(C)

Global Interpreter Lock
• Only one thread can be running Python code in a process at once
• Python threads are bad for using multiple cores
• They're still useful for threads blocked on I/O
• Some Python libraries using other languages allow parallelism

waiting for GIL

waiting for net

Why the GIL?

thread 1 stack

thread 2 stack

heap

thread 1
x = some list
x = None

thread 2
y = that same list
y = None

x

y

list object

references=2

Why the GIL?

thread 1 stack

thread 2 stack

heap

thread 1
x = some list
x = None

thread 2
y = that same list
y = None

x

list object

references=1

object will be freed when references is 0

Why the GIL?

thread 1 stack

thread 2 stack

heap

thread 1
x = some list
x = None

thread 2
y = that same list
y = None

x

list object

references=1

situation
• cpython (main Python interpreter) uses reference

counting internally to know when it can free objects
• implication: multiple threads modifying same integer

solutions
• run one thread at a time (Python's approach)
• lots of locking (slower for single-threaded code)
• other?

Future of GIL

https://docs.python.org/3.13/whatsnew/3.13.html

...

...

https://docs.python.org/3.13/whatsnew/3.13.html

Outline
Critical Sections and Locks

Worksheet and Demos

Advanced Topics
• Global Interpreter Lock
• Instruction Reordering and Caching

Challenges Beyond Interleaving

import threading

y = 0
ready = False

def task(x):
 global y, ready
 y = x ** 2
 ready = True

t = threading.Thread(target=task, args=[5])
t.start()
while not ready:
 pass
print(y) # want 25 (not 0)

no interleaving is problematic, but it's still not correct on a modern CPU!

Challenges Beyond Interleaving

import threading

y = 0
ready = False

def task(x):
 global y, ready
 y = x ** 2
 ready = True

t = threading.Thread(target=task, args=[5])
t.start()
while not ready:
 pass
print(y) # want 25 (not 0)

no interleaving is problematic, but it's still not correct on a modern CPU!

ready = True
y = x ** 2

out-of-order execution
(CPU optimization)

Challenges Beyond Interleaving

import threading

y = 0
ready = False

def task(x):
 global y, ready
 y = x ** 2
 ready = True

t = threading.Thread(target=task, args=[5])
t.start()
while not ready:
 pass
print(y) # want 25 (not 0)

no interleaving is problematic, but it's still not correct on a modern CPU!

core 1 (running task)

L1 cache:
y = 25
ready = True

core 2 (running main)

L1 cache:
y = 0 (stale)
ready = False (stale)

main

Challenges Beyond Interleaving

import threading

y = 0
ready = False

def task(x):
 global y, ready
 y = x ** 2
 ready = True

t = threading.Thread(target=task, args=[5])
t.start()
while not ready:
 pass
print(y) # want 25 (not 0)

no interleaving is problematic, but it's still not correct on a modern CPU!

core 1 (running task)

L1 cache:
y = 25
ready = True

core 2 (running main)

L1 cache:
y = 0 (stale)
ready = True

main

Concluding Advice

Use provided primitives (like locks+joins) to control isolation+ordering
• these calls control interleavings AND memory barriers (topic beyond 544)
• it's easy to get lockless approaches wrong

Correctness tips (keep it simple to avoid bugs!):
• can you use multiple processes instead of threads?
• is one big lock good enough for protecting all your data?
• is it OK to hold the lock through a whole function call?

Performance tips:
• avoid holding a lock while blocking on I/O (network, disk, user input, etc)
• if you have multiple updates, can you hold the lock for more than one of them?
• use performant packages like numpy

➡ the code in C/C++/Fortran/Rust can often run without the GIL
➡ these will often create threads for you

