
[544] File Systems
Tyler Caraza-Harter

Learning Objectives

• compare the performance characteristics of different kinds of
block devices (HDDs and SSDs)

• describe different kinds of file systems
• interpret the output of tools like "mount" and "df" to

understand the structure of a mount namespace

Outline
Block Devices (overview, HDD, SSD)

File Systems

Demos

Block Devices
Memory is byte addressable

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

0 1 2 3 4 5

...

512 bytes

0

512 bytes

1

512 bytes

2

...

Block storage devices are accessed in units of blocks (512 bytes, few KBs, etc)

Optimizing Disk I/O with Memory: Caching and Buffering

512 bytes

0

512 bytes

1

512 bytes

2

...

ACW00011604 17.1167 -61.7833 10.1 ST JOHNS COOLIDGE FLD
ACW00011647 17.1333 -61.7833 19.2 ST JOHNS
AE000041196 25.3330 55.5170 34.0 SHARJAH INTER. AIRP GSN 41196
AEM00041194 25.2550 55.3640 10.4 DUBAI INTL 41194
AEM00041217 24.4330 54.6510 26.8 ABU DHABI INTL 41217
AEM00041218 24.2620 55.6090 264.9 AL AIN INTL 41218
AF000040930 35.3170 69.0170 3366.0 NORTH-SALANG GSN 40930
AFM00040938 34.2100 62.2280 977.2 HERAT 40938
AFM00040948 34.5660 69.2120 1791.3 KABUL INTL 40948
AFM00040990 31.5000 65.8500 1010.0 KANDAHAR AIRPORT 40990
AG000060390 36.7167 3.2500 24.0 ALGER-DAR EL BEIDA GSN 60390
AG000060590 30.5667 2.8667 397.0 EL-GOLEA GSN 60590
AG000060611 28.0500 9.6331 561.0 IN-AMENAS GSN 60611
AG000060680 22.8000 5.4331 1362.0 TAMANRASSET GSN 60680
AGE00135039 35.7297 0.6500 50.0 ORAN-HOPITAL MILITAIRE
AGE00147704 36.9700 7.7900 161.0 ANNABA-CAP DE GARDE
AGE00147705 36.7800 3.0700 59.0 ALGIERS-VILLE/UNIVERSITE
AGE00147706 36.8000 3.0300 344.0 ALGIERS-BOUZAREAH

We might want to process one line a time, but it would be
wasteful to repeatedly read the same block from the device

• the Linux page cache stores pages from files in RAM
(usually 4KB pages, often larger than device blocks)

• Python (and other) programs might buffer chunks of data to avoid
asking Linux too many times for small pieces of data

ghcnd-stations.txt

Optimizing Disk I/O with Memory: Caching and Buffering

htop

page cache, could evict if needed only counts non-cache memory

We might want to process one line a time, but it would be
wasteful to repeatedly read the same block from the device

• the Linux page cache stores pages from files in RAM
(usually 4KB pages, often larger than device blocks)

• Python (and other) programs might buffer chunks of data to avoid
asking Linux too many times for small pieces of data

Small Reads (<512 bytes): Performance
ACW00011604 17.1167 -61.7833 10.1 ST JOHNS COOLIDGE FLD
ACW00011647 17.1333 -61.7833 19.2 ST JOHNS
AE000041196 25.3330 55.5170 34.0 SHARJAH INTER. AIRP GSN 41196
AEM00041194 25.2550 55.3640 10.4 DUBAI INTL 41194
AEM00041217 24.4330 54.6510 26.8 ABU DHABI INTL 41217
AEM00041218 24.2620 55.6090 264.9 AL AIN INTL 41218
AF000040930 35.3170 69.0170 3366.0 NORTH-SALANG GSN 40930
AFM00040938 34.2100 62.2280 977.2 HERAT 40938
AFM00040948 34.5660 69.2120 1791.3 KABUL INTL 40948
AFM00040990 31.5000 65.8500 1010.0 KANDAHAR AIRPORT 40990
AG000060390 36.7167 3.2500 24.0 ALGER-DAR EL BEIDA GSN 60390
AG000060590 30.5667 2.8667 397.0 EL-GOLEA GSN 60590
AG000060611 28.0500 9.6331 561.0 IN-AMENAS GSN 60611
AG000060680 22.8000 5.4331 1362.0 TAMANRASSET GSN 60680
AGE00135039 35.7297 0.6500 50.0 ORAN-HOPITAL MILITAIRE
AGE00147704 36.9700 7.7900 161.0 ANNABA-CAP DE GARDE
AGE00147705 36.7800 3.0700 59.0 ALGIERS-VILLE/UNIVERSITE
AGE00147706 36.8000 3.0300 344.0 ALGIERS-BOUZAREAH

start = time.time()
with open("ghcnd-stations.txt") as f:
 for line in f:
 stations.append(line[:11])
print(time.time() - start)

stations = []
line_len = 86

start = time.time()
with open("ghcnd-stations.txt",
 "rb", buffering=0) as f:
 offset = 0
 while True:
 f.seek(offset)
 station = str(f.read(11), "utf-8")
 offset += line_len

 if station:
 stations.append(station)
 else:
 break
print(time.time() - start)

goal: collect all station IDs

simple version that reads everything: 66 ms

"optimized" version that only reads stations: 171 ms

ghcnd-stations.txt

format issue: no good way to
read one column without everything else

(similar to issues with bad cache line usage)

Hard Disk Drives (HDDs)

Steps to read/write
1. move head to correct track
2. wait for spinning disk to rotate until data is under head
3. transfer the data

these steps dominate unless
transferring lots of data (few MBs)

0
1

2

3

456
7

8

9
10 11 12 ...

Layout
• assign block numbers to platter locations so sequential (like 5,6,7,8, ...) reads/writes will be fast
• programmers should assume random accesses (like 2, 9, 5, 1, ...) will be slow

Capacity vs. I/O and Short Stroking

Storage resources
1. capacity
2. I/O (input/output often more limited when using HDDs)

Short Stroking
• head moves over platter faster near outside track
• smaller block addrs correspond to outside tracks
• strategy: only use outside tracks
• pros: faster I/O
• cons: less space

Solid State Drives (SSDs) - Flash

Reading and writing
• no moving parts
• inherently parallel

SSD internals:
• "block" and "page" have different meanings in this context
• "page" => unit that we can read or write (couple KBs)
• pages cannot be individually re-written
• "block" => unit that is erased together (maybe 100s of KBs)

block

page

Solid State Drives (SSDs) - Flash

A B

C D

want to write X. Options:
• erase whole block and re-write A, C, and D too
• write X somewhere else

X

Solid State Drives (SSDs) - Flash

A B

C D

want to write X. Options:
• erase whole block and re-write A, C, and D too
• write X somewhere else

X

disadvantages
• need extra bookkeeping (in SSD) to know where data is
• need to eventually move things around to reclaim the

space wasted by B
• strategy: sequentially write whole blocks (when possible)

garbage

HDDs vs. SSDs

Metric:

capacity
latency
random IOPS
throughput (sequential)
throughput (random writes)
throughput (random reads)

Relative to HDDS, SSDS are:

worse
much better (no moving parts)
even better -- low latency AND in parallel
little better
better (but block erase is a concern)
much better

Metrics
• capacity: how many bytes can we store?
• latency: how long does it take to start transferring data
• IOPS (I/O operations, of some max size, per second): how many small/random

transfers can we do per second
• throughput: how many bytes can we transfer per second

Partitions and RAID

root@instance-1:/home/trh# ls /dev/sd*
/dev/sda /dev/sda1 /dev/sda14 /dev/sda15
/dev/sdb /dev/sdb1

Block devices can be divided into partitions:

2 devices 4 partitions

HDD blocks: partition 1 partition 2 partition 3

RAID controllers (Redundant Array of Inexpensive Disks) can make multiple devices appear as one:

SSDdevices: SSD SSD

RAID Controller

0 M

0 M 0 N 0 P

0 N 0 N 0 N

Many configs use redundancy (e.g., same data on >1 disk) to avoid data loss when one device dies.

Outline
Block Devices (overview, HDD, SSD)

File Systems

Demos

File Systems
Difficult: writing code to store data in blocks
Easier: writing code to store data in files
Files systems abstract storage for us. We write to data blocks without thinking about it
by writing data to files in a local file system.

our code

local file system

read/write a file

read/write some blocks

block device

Types of File System (FS)

our code

ext4

block device

local FS layered FS (for Docker) in-memory FS (Temp Files)

pseudo FS (Stats) network FS distributed FS

our code

overlayfs

some other FS

our code

tmpfs

RAM

our code

procfs

some info

our code

NFS other FS

NFS Server

server

our code

HDFS

cluster of worker machines

read/write a file

read/write some blocks

RPC

Types of File System (FS)

our code

ext4

block device

local FS layered FS (for Docker) in-memory FS (Temp Files)

pseudo FS (Stats) network FS distributed FS

our code

overlayfs

some other FS

our code

tmpfs

RAM

our code

procfs

some info

our code

NFS other FS

NFS Server

server

our code

HDFS

cluster of worker machines

read/write a file

read/write some blocks

RPC

Local File Systems

0 1 2 3 4

How does a local FS use blocks?

2KB
blocks:

Local File Systems

0 1 2 3 4

2KB
blocks:

inode 0
blks: 2,4
size: 3KB

How does a local FS use blocks? Many possibilites. One example...

Files
• some metadata, like size, block locations
• each is represented by an "inode" structure (above file is fragmented)

Local File Systems

file.txt: inode 0
...

0 1 2 3 4

2KB
blocks:

How does a local FS use blocks? Many possibilites. One example...

Files
• some metadata, like size, block locations
• each is represented by an "inode" structure (above file is fragmented)

Directories
• special files containing name => inode mappings
• file extensions (like .txt) don't mean anything to the file system (just for documentation)
• the same inode could be in multiple directories
• each file system has a "root" directory from which you can reach everything else recursively
• formatting a disk creates initial structures (like the root directory)

inode 0
blks: 2,4
size: 3KB

inode 1
blks: 3

...

File System Trees
Nesting of directories and files logically create "trees"

• technically DAGs (directed acyclic graphs) because the same inode number can have
multiple names in different directories

• leaves: files and empty directories

/

A B

D.csv

E.txt F.py

C

current working directory (CWD)

relative path to E.txt: C/E.txt
absolute path to E.txt: /B/C/E.txt
relative path to D.csv: ../A/D.csv
absolute path to D.csv: TopHat

Multiple File Systems: Windows Approach

A B

D.csv

E.txt F.py

C

HDD partition 1 partition 2
local FS 1 local FS 2

SSD partition 1
local FS 3

A X Y Z

nb

C:\ D:\ E:\

have multiple trees (each is a "drive")

Multiple File Systems: Unix Approach

https://www.brit.co/fruit-salad-tree/

mount file systems over directories of other file systems to make one big tree

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

A B

D.csv

E.txt F.py

C

A X Y Z

nb

/ / /

sda2 (root FS) sdb1sda1

HDD partition 1 partition 2
local FS 1 local FS 2

SSD partition 1
local FS 3

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

A B

D.csv

E.txt F.py

C

A X Y Z

nb

/ / /

sda2 (root FS) sdb1sda1

mount /dev/sda1 /A

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

A B

D.csv

E.txt F.py

C

X Y Z

nb

A

/ /

sda2 (root FS) sdb1

mount /dev/sda1 /A

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

A B

D.csv

E.txt F.py

C

X Y Z

nb

A

/ /

sda2 (root FS) sdb1

mount /dev/sda1 /A
mount /dev/sdb1 /A/B

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

A

D.csv

X

Y Z

nb

A

/

B

sda2 (root FS)

mount /dev/sda1 /A
mount /dev/sdb1 /A/B

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sda2 (root FS)

mount /dev/sda1 /A
mount /dev/sdb1 /A/B

Note: each container has
it's own root file system
and mount namespace

A

D.csv

X

Y Z

nb

A

/

B

Container File Systems (Simplified)

C1

/

ubuntu
stuff

C2 tmp

tmptmp

debian
stuff

/

ubuntu
stuff

/

tmp

debian
stuff

tmp

mount namespace (VM)

mount namespace (container 1) mount namespace (container 2)

Outline
Block Devices (overview, HDD, SSD)

File Systems

Demos

