544 File Systems

Tyler Caraza-Harter

Learning Objectives

» compare the performance characteristics of different kinds of
block devices (HDDs and S5Ds)

» describe different kinds of file systems

* Interpret the output of tools like "mount” and "df" to
understand the structure of a mount namespace

Outline

Block Devices (overview, HDD, SSD)
File Systems

Demos

Block Devices

Memory s

“.
o I 2 3 4 5

Block storage devices are accessed in units of (512 bytes, few KBs, etc)

512 bytes 512 bytes 512 bytes

0 | 2

Optimizing Disk /O with Memory: Caching and Buffering

0

512 bytes 512 bytes

| 2

ghcnd-stations.txt

We might want to process one line a time, but it would be
wasteful to repeatedly read the same block from the device

* the Linux page cache stores pages from files in RAM
(usually 4KB pages, often larger than device blocks)

Python (and other) programs might bufier chunks of data to avoid
asking Linux too many times for small pieces of data

Optimizing Disk I/O with Memory: Caching and Buffering

htop
[0.7%) . 33, 79 thr; 1
[9.0%) . 9.00 0.0¢
SRARNARNE 260M/1.93G) s, 19:4
0K /0K
[[k\]
page cache, could evict if needed only counts non-cache memory

We might want to process one line a time, but it would be
wasteful to repeatedly read the same block from the device

e the Linux stores pages from files in RAM
(usually 4KB pages, often larger than device blocks)
* Python (and other) programs might chunks of data to avoid

asking Linux too many times for small pieces of data

Small Reads (<512 bytes): Performance

goal: collect all station IDs

ghcnd-stations.txt

start = time.time ()
with open ("ghcnd-stations.txt") as f:
for line in f:
stations.append(line[:11])
print (Cime.time () - start)

simple version that reads everything: 66 ms

format issue: no good way to
read one column without everything else

(similar to issues with bad cache line usage)

stations = []
line len = 86
start = time.time ()

with open ("ghcnd-stations.txt",
"rb", buffering=0) as f:
offset = 0
while True:
f.seek(offset)
station = str(f.read(11), "utf-8")
offset += line len

if station:
stations.append(station)
else:
break
print (time.time () - start)

"optimized" version that only reads stations: 171 ms

Hard Disk Drives (HDDs)

Steps to read/write

|, move head to correct track these steps dominate unless
2. wait for spinning disk to rotate until data is under head | transferring lots of data (few MBs)
3. transfer the data

Layout
e assign block numbers to platter locations so sequential (like 5,6,7,8, ...) reads/writes will be fast
* programmers should assume random accesses (like 2,9,5, |, ...) will be slow

Capacity vs. /O and Short Stroking

Storage resources
|, capacity
2. /O (input/output often more limited when using HDDs)

Short Stroking
* head moves over platter faster near outside track
* smaller block addrs correspond to outside tracks
* strategy: only use outside tracks
* pros:faster [/O
* cons:less space

Solid State Drives (SSDs) - Flash

Reading and writing
* NO moving parts
* inherently parallel

SSD internals:
* "block" and "page" have different meanings in this context
* "page" => unit that we can read or write (couple KBs)
* pages cannot be individually re-written
* "block” => unit that is erased together (maybe |00s of KBs)

block

Solid State Drives (SSDs) - Flash

want to write X. Options:
* erase whole block and re-write A, C, and D too

e write X somewhere else

Solid State Drives (SSDs) - Flash

want to write X. Options:
* erase whole block and re-write A, C, and D too
e« write X somewhere else

disadvantages
* need extra bookkeeping (in SSD) to know where data is

* need to eventually move things around to reclaim the
space wasted by B

garbage

* strategy: sequentially write whole blocks (when possible)

HDDs vs. SSDs

Metrics
. :how many bytes can we store?
. :how long does It take to start transferring data

. (I/O operations, of some max size, per second): how many small/random
transfers can we do per second
. :how many bytes can we transfer per second

Metric: Relative to HDDS,

capacity worse
latency much better (no moving parts)

random |OPS even better - low latency AND in parallel
throughput (sequential) little better
throughput (random writes) better (but block erase is a concern)

throughput (random reads) much better

Partitions and RAID

Block devices can be divided into partitions:
0 M O N O P

nce=1:/home/trh# 1ls /dev/sdx

root@inst
-——

2 devices 4 partitions

RAID controllers (Redundant Array of Inexpensive Disks) can make multiple devices appear as one:

0 M

% 1 ~

0 N O N O N

Many configs use redundancy (e.g., same data on > disk) to avoid data loss when one device dies.

Outline

Block Devices (overview, HDD, 5SD)
File Systems

Demos

File Systems

Difficult: writing code to store data In
Easier: writing code to store data in

Files systems abstract storage for us. We write to data blocks without thinking about it
by writing data to files in a

read/write a file
\ /

local file system

read/write some blocks

Types of File System (FS)

local FS layered FS (for Docker) in-memory FS (Temp Files)
read/write a file
read/write some blocks

pseudo FS (Stats) network FS distributed FS

3

server

cluster of worker machines

Types of File System (FS)

local FS layered FS (for Docker) in-memory FS (Temp Files)

read/write a file
read/write some blocks

pseudo FS (Stats) network FS distributed FS

3

server

cluster of worker machines

Local File Systems

2KB
blocks:

How does a local FS use blocks?

Local File Systems

e inodey/

blks: 2,47
blocks: size: 3KB

How does a local FS use blocks! Many possibilites. One example...

Files
* some metadata, like size, block locations
* each is represented by an "Inode" structure (above file is fragmented)

Local File Systems

2KB
blocks:

inOdey:{

blks: 2,471l blks: 3
size: 3KB

file.txt: inodeb

Files

How does a local FS use blocks! Many possibilites. One example...

some metadata, like size, block locations
each is represented by an "inode" structure (above file is fragmented)

Directories

special files containing name => inode mappings

file extensions (like txt) don't mean anything to the file system (just for documentation)
the same inode could be in multiple directories

each file system has a "root" directory from which you can reach everything else recursively
formatting a disk creates initial structures (like the root directory)

File System Trees

Nesting of directories and files logically create "trees"
* technically DAGs (directed acyclic graphs) because the same inode number can have
multiple names in different directories

* leaves: files and empty directories

4

relative path to E.txt: C/E. txt
absolute path to E.txt: /B/C/E. txt
relative path to D.csv: . . /A/D.csv
absolute path to D.csv: TopHat

Multiple File Systems:VWindows Approach

have multiple trees (each is a "drive")

J}@ do o .

local FS | local FS 2

e pent [EEoRaN

local FS 3

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

https://www.brit.co/fruit-salad-tree/

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sdal sda? (root FS) sdb|

local FS | local FS 2
o0 parton) [partiiend
local FS 3

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sda? (root FS)

mount /dev/sdal /A

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sda? (root FS) sdb|

mount /dev/sdal /A

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sda? (root FS) " sdb|

4
4
4
4
4
4
L 4
4

mount /dev/sdal /A
mount /dev/sdbl /A/B

4
4

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sda? (root FS)

/7 \
\

mount /dev/sdal /A
mount /dev/sdbl /A/B

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sda? (root FS)

Note: each container has
it's own root file system
and mount namespace

/7

\

mount /dev/sdal /A
mount /dev/sdbl /A/B

Container File Systems (Simplified)

mount namespace (VM)

o

ubuntu debian
, stuff stuff

/ |®

ubu Nntu debiaﬂ
stuff stuff

mount namespace (container) mount namespace (container 2)

Outline

Block Devices (overview, HDD, 5SD)
File Systems

Demos

