
[544] File Formats
Tyler Caraza-Harter

Learning Objectives

• describe different file formats in terms of orientation,
encoding, compression, and schemas

• write code to use parquet files
• differentiate between transactions workloads and analytics

workloads
• explain the motivation for using an ETL (extract transform

load) process to copy data from an transactions processing
system to an analytics processing system

some data

file system: table.csv data.json records.dbfiles:

database

some data

block device, another FS, etc

approach 1: file formats approach 2: DBs

File systems let us give names to sequences of bytes (files) and hierarchically organize
those files (via directories). We usually want some structure for those bytes.

Outline
File Formats

Demos

Databases

CSV Parquet

orientation row column

encoding text binary

compression none snappy

schemas inferred explicit

File Layout
Goals

• efficient input/output from storage (large enough reads/writes, sequential accesses)
• minimize parsing/deserialization computation time

Assumptions
• many file systems will try to map consecutive bytes of a file to consecutive blocks on a

storage device (but note that in some cases sequential file I/O becomes random disk I/O)
• need to clarify assumptions about how code will access the data (for example, one whole

column? a row at a time?)

ACW00011604 17.1167 -61.7833 10.1 ST JOHNS COOLIDGE FLD
ACW00011647 17.1333 -61.7833 19.2 ST JOHNS
AE000041196 25.3330 55.5170 34.0 SHARJAH INTER. AIRP GSN 41196
AEM00041194 25.2550 55.3640 10.4 DUBAI INTL 41194
AEM00041217 24.4330 54.6510 26.8 ABU DHABI INTL 41217
AEM00041218 24.2620 55.6090 264.9 AL AIN INTL 41218
AF000040930 35.3170 69.0170 3366.0 NORTH-SALANG GSN 40930
AFM00040938 34.2100 62.2280 977.2 HERAT 40938
AFM00040948 34.5660 69.2120 1791.3 KABUL INTL 40948
AFM00040990 31.5000 65.8500 1010.0 KANDAHAR AIRPORT 40990
AG000060390 36.7167 3.2500 24.0 ALGER-DAR EL BEIDA GSN 60390
AG000060590 30.5667 2.8667 397.0 EL-GOLEA GSN 60590
AG000060611 28.0500 9.6331 561.0 IN-AMENAS GSN 60611
AG000060680 22.8000 5.4331 1362.0 TAMANRASSET GSN 60680
AGE00135039 35.7297 0.6500 50.0 ORAN-HOPITAL MILITAIRE
AGE00147704 36.9700 7.7900 161.0 ANNABA-CAP DE GARDE
AGE00147705 36.7800 3.0700 59.0 ALGIERS-VILLE/UNIVERSITE
AGE00147706 36.8000 3.0300 344.0 ALGIERS-BOUZAREAH

ghcnd-stations.txt

good: just read the one
block containing the row

bad: need to read everything
to access any one column

File Layout
Goals

• efficient input/output from storage (large enough reads/writes, sequential accesses)
• minimize parsing/deserialization computation time

Assumptions
• many file systems will try to map consecutive bytes of a file to consecutive blocks on a

storage device (but note that in some cases sequential file I/O becomes random disk I/O)
• need to clarify assumptions about how code will access the data (for example, one whole

column? a row at a time?)

Major access patterns
• transactions processing: reading/changing a row (or few rows) as needed by an application

(note: "transaction" has other meanings for databases as well -- more later...)
• analytics processing: computing over many rows for specific columns

Row-Oriented vs. Column-Oriented Layout

col1 col2 col3

1 5 A

2 6 B

3 7 C

4 8 D

row-oriented file: 1 5 A 2 6 B 3 7 C 4 8 D

col-oriented file: 1 2 3 4 5 6 7 8 A B C D

position in file

Row-Oriented vs. Column-Oriented Layout

col1 col2 col3

1 5 A

2 6 B

3 7 C

4 8 D

row-oriented file: 1 5 A 2 6 B 3 7 C 4 8 D

col-oriented file: 1 2 3 4 5 6 7 8 A B C D

position in file

transactional access pattern

fast

slow

Row-Oriented vs. Column-Oriented Layout

col1 col2 col3

1 5 A

2 6 B

3 7 C

4 8 D

row-oriented file: 1 5 A 2 6 B 3 7 C 4 8 D

col-oriented file: 1 2 3 4 5 6 7 8 A B C D

position in file

slow

fast

analytics access pattern

Row-Oriented vs. Column-Oriented Layout

col1 col2 col3

1 5 A

2 6 B

3 7 C

4 8 D

row-oriented file: 1 5 A 2 6 B 3 7 C 4 8 D

col-oriented file: 1 2 3 4 5 6 7 8 A B C D

position in file

CSV

Parquet

Outline
File Formats

Demos

Databases

CSV Parquet

orientation row column

encoding text binary

compression none snappy

schemas inferred explicit

Text vs. Binary

1234678900

string:
???? bytes

parquet int64:
???? bytes

parquet int32:
???? bytes

Text vs. Binary

1234678900

string:
10 bytes

parquet int64:
8 bytes

parquet int32:
4 bytes

Text vs. Binary

1234678900

string:
10 bytes

parquet int64:
8 bytes

parquet int32:
4 bytes

12

string:
2 bytes

parquet int64:
8 bytes

parquet int32:
4 bytes

protobuf int32/64:
1 byte more compute work necessary to get the

numbers ready for calculations on the CPU

Outline
File Formats

Demos

Databases

CSV Parquet

orientation row column

encoding text binary

compression none snappy

schemas inferred explicit

Compression
Idea: avoid repeating yourself

• repetitive datasets are more compressible
• more compute time finding repetition => better compression ratio (original/compressed size)

Example: snappy compression (parquet default):

1210 W Dayton St, Madison, WI; 1202 W Johnson

literal literal literal copy

"[Snappy] does not aim for maximum compression, or compatibility with any other
compression library; instead, it aims for very high speeds and reasonable compression."

Snappy documentation
• https://github.com/google/snappy
• https://github.com/google/snappy/blob/main/format_description.txt

Challenge: Small Updates

1210 W Dayton St, Madison, WI; 1202 W Johnson

literal literal literal copy

can't just update this first address in isolation
(need to rewrite other parts of the file)

Compression Window/Block

 "the current Snappy compressor works in 32 kB blocks and
does not do matching across blocks"

row-oriented file: 1 5 A 2 6 B 3 7 A 4 8 B

col-oriented file: 1 2 3 4 5 6 7 8 A B A B

position in file

will compression generally work better for row-oriented
formats or column-oriented formats?

Outline
File Formats

Demos

Databases

CSV Parquet

orientation row column

encoding text binary

compression none snappy

schemas inferred explicit

Schemas
Schema: "A description of the structure of some data,
including its fields and datatypes." -- Kleppmann

CSVs:
• in the file, everything is text
• pd.read_csv("file.csv", dtype={"col1": str, "col2": int, ...}) # specify schema (annoying)
• pd.read_csv("file.csv", dtype=None) # infer schema (slow, error prone!)

parquet files:
• type specification is part of the file
• fast: no need for very slow schema inference

schema specified as a dict

Outline
File Formats

Demos...

Databases

Outline
File Formats

Demos...

Databases
• tables and queries
• architecture
• transactions vs. analytics

Tables code abbr name
1 AL Alabama
2 AK Alaska
4 AZ Arizona
5 AR Arkansas
6 CA California
8 CO Colorado
9 CT Connecticut
10 DE Delaware
...

id action_taken
1 Loan originated
2 Application approved but not accepted
3 Application denied by financial institution
4 Application withdrawn by applicant
5 File closed for incompleteness
6 Loan purchased by the institution
7 Preapproval request denied by financial
8 Preapproval request approved but not accepted

id loan_purpose
1 Home purchase
2 Home improvement
3 Refinancing

id purpose action state amount rate
1 2 1 2 20000 5.0
2 1 1 8 300000 3.0
3 1 4 10 450000 3.2
...

tbl_action

tbl_state
tbl_purpose

tbl_loan

Databases store a collection of tables
• schemas define the columns/types for each table
• IDs/keys let us relate multiple tables

(for example, the first loan is in Alaska)

floatint

string

Queries code abbr name
1 AL Alabama
2 AK Alaska
4 AZ Arizona
5 AR Arkansas
6 CA California
8 CO Colorado
9 CT Connecticut
10 DE Delaware
...

id action_taken
1 Loan originated
2 Application approved but not accepted
3 Application denied by financial institution
4 Application withdrawn by applicant
5 File closed for incompleteness
6 Loan purchased by the institution
7 Preapproval request denied by financial
8 Preapproval request approved but not accepted

id loan_purpose
1 Home purchase
2 Home improvement
3 Refinancing

id purpose action state amount rate
1 2 1 2 20000 5.0
2 1 1 8 300000 3.0
3 1 4 10 450000 3.2
...

tbl_action

tbl_state
tbl_purpose

tbl_loan

Queries let us
• ask questions about the data

(like, what is the name of the state with "WI" as an abbreviation)
• make changes to the data

(like insert Puerto Rico as a row in tbl_state)

SQL code abbr name
1 AL Alabama
2 AK Alaska
4 AZ Arizona
5 AR Arkansas
6 CA California
8 CO Colorado
9 CT Connecticut
10 DE Delaware
...

id action_taken
1 Loan originated
2 Application approved but not accepted
3 Application denied by financial institution
4 Application withdrawn by applicant
5 File closed for incompleteness
6 Loan purchased by the institution
7 Preapproval request denied by financial
8 Preapproval request approved but not accepted

id loan_purpose
1 Home purchase
2 Home improvement
3 Refinancing

id purpose action state amount rate
1 2 1 2 20000 5.0
2 1 1 8 300000 3.0
3 1 4 10 450000 3.2
...

tbl_action

tbl_state
tbl_purpose

tbl_loan

Structure Query Language (SQL)
• most popular/famous query language
• ask questions about the data: SELECT
• make changes to the data: INSERT, UPDATE, DELETE

SQL code abbr name
1 AL Alabama
2 AK Alaska
4 AZ Arizona
5 AR Arkansas
6 CA California
8 CO Colorado
9 CT Connecticut
10 DE Delaware
...

id action_taken
1 Loan originated
2 Application approved but not accepted
3 Application denied by financial institution
4 Application withdrawn by applicant
5 File closed for incompleteness
6 Loan purchased by the institution
7 Preapproval request denied by financial
8 Preapproval request approved but not accepted

id loan_purpose
1 Home purchase
2 Home improvement
3 Refinancing

id purpose action state amount rate
1 2 1 2 20000 5.0
2 1 1 8 300000 3.0
3 1 4 10 450000 3.2
...

tbl_action

tbl_state
tbl_purpose

tbl_loan

Structure Query Language (SQL)
• most popular/famous query language
• ask questions about the data: SELECT
• make changes to the data: INSERT, UPDATE, DELETE

SELECT AVG(rate) FROM tbl_loan;
SELECT amount, rate FROM tbl_loan WHERE id = 544;
INSERT INTO tbl_loan (...) VALUES (...);

analytics (calculate over many/all rows, few colums)

transactions (working with whole row
 or few rows at a time)

Outline
File Formats

Demos

Databases
• tables and queries
• architecture
• transactions vs. analytics

Data Base Management Systems

Figure 1-1. Architecture of a database management system
(Chapter 1 of Database Internals, by Petrov)

example database architecture:Architecture: big picture of a system's
components/subsystems

Databases manage all the resources
we've learned about:

• storage
• memory
• network
• compute

storage structures
in files

Data Base Management Systems

Figure 1-1. Architecture of a database management system
(Chapter 1 of Database Internals, by Petrov)

example database architecture:Architecture: big picture of a system's
components/subsystems

Databases manage all the resources
we've learned about:

• storage
• memory
• network
• compute

storage structures
in files

in-memory cache

Data Base Management Systems

Figure 1-1. Architecture of a database management system
(Chapter 1 of Database Internals, by Petrov)

example database architecture:Architecture: big picture of a system's
components/subsystems

Databases manage all the resources
we've learned about:

• storage
• memory
• network
• compute

storage structures
in files

in-memory cache

SQL queries/results
sent over network

Data Base Management Systems

Figure 1-1. Architecture of a database management system
(Chapter 1 of Database Internals, by Petrov)

example database architecture:Architecture: big picture of a system's
components/subsystems

Databases manage all the resources
we've learned about:

• storage
• memory
• network
• compute

storage structures
in files

in-memory cache

SQL queries/results
sent over network

compute over data
to answer queries

Files vs. Databases (storage+compute coupling)

Databases pros/cons (relative to just using files):
• "[databases] tightly couple their internal layout of the data and indexes in on-

disk files with their highly optimized query processing engines, thus providing
very fast computations on the stored data..."

• "Databases store data in complex (often proprietary) formats that are
typically highly optimized for only that database’s SQL processing engine to
read. This means other processing tools, like machine learning and deep
learning systems, cannot efficiently access the data (except by inefficiently
reading all the data from the database)."

some data

file system: table.parquet data.json records.dbfiles:

database

some data

Outline
File Formats

Demos

Databases
• tables and queries
• architecture
• transactions vs. analytics

Transactions vs. Analytics

SQL (as a language) works great for both transactions and analytics
Problem: it's hard for a single database (SQL or otherwise) to be good at both
Main database types:

• OLTP (online transactions processing)
• OLAP (online analytics processing)

"The meaning of online in OLAP is unclear; it probably refers to the fact that queries are not
just for predefined reports, but that analysts use the OLAP system interactively for explorative
queries." ~ Kleppmann.

SELECT AVG(rate) FROM tbl_loan;
SELECT amount, rate FROM tbl_loan WHERE id = 544;
INSERT INTO tbl_loan (...) VALUES (...);

analytics (calculate over many/all rows, few colums)

transactions (working with whole row
 or few rows at a time)

Transactions vs. Analytics

Figure 1-1. Architecture of a database management system
(Chapter 1 of Database Internals, by Petrov)

example database architecture:

Typical storage design
OLTP: row oriented data layout
OLAP: col oriented data layout

What if you need transactions AND analytics?

Figure 3-8. Simplified outline of ETL into a data warehouse.
(Chapter 3 of Data-Intensive Applications, by Kleppmann)

Vocab
• Data warehouse: the OLAP database where we combine data from many sources
• ETL: extract-transform-load (process for getting data out of OLTP DBs and into OLAP DB)

