544 | Hadoop Ecosystem

Tyler Caraza-Harter

L
'@

Learning Objectives

» describe the purpose of GFS, MapReduce, and Biglable (at a
high level), and similar Hadoop systems (HDFS, Spark, and
Cassandra)

» describe partitioning and replication and the motivation for
each technique

- identify the role that clients, NameNodes, and DataNodes
play for HDFS reads and writes

Outline: Hadoop Ecosystem

Motivation, Hadoop Ecosystem

Hadoop File System (HDFS)

Design: storage systems are generally built
as a composition of layered subsystems

You Today: 3 layered systems
l data in the Hadoop Ecosystem

\

What if your data is too big for your server?

You
l data

MySQmL

innoDB

l

File System

l
—

hard

What if your data is too big for your server?
Option |:scale up (buy better hardware)

more/faster CPUs

m more RAM (memory)

MySOL.

Inn?DB

v
File System

RAID (redundant array of inexpensive disks)

morvre disks

What if your data is too big for your server?

Option 2: scale out (more machines)

where does the data actually go?

™

Q

r

™

™,

Q

r

™

.o 1000s more...

Approach: partition the tables

tbl users

user 1D name

1 "Yiyin"

2 "Ivan"

3 "Poulami™"

tbl users

user 1D name

1 "Yiyin"
2 "Ivan"
tbl purchases

user 1D amt

3 $20

tbl purchases
user 1D amt
2 $S10
2 S15
3 520

tbl users

user 1D name

3 "Poulami"
tbl purchases

user 1D amt

2 S10

2 S15

Approach: send queries to multiple DBs...

SELECT * FROM tbl purchase WHERE amt > 12

tbl users

user 1D name

1 "Yiyin"
2 "Ivan"
tbl purchases

user 1D amt

3 $20

tbl users

user 1D name

3 "Poulami"
tbl purchases

user 1D amt

2 S10

2 S15

...combine results

SELECT * FROM tbl purchase WHERE amt > 12

tbl users

user 1D name

1 "Yiyin"
2 "Ivan"
tbl purchases

user 1D amt

3 $20

tbl purchases
user 1D amt
2 S15
3 $20

tbl users

user 1D name

3 "Poulami"
tbl purchases

user 1D amt

2 S10

2 S15

What is a query that would break things!?

SELECT

tbl users

user 1D name

1 "Yiyin"
2 "Ivan"
tbl purchases

user 1D amt

3 $20

tbl users

user 1D name

3 "Poulami"
tbl purchases

user 1D amt

2 S10

2 S15

What is a query that would break things!?

SELECT * FROM tbl_users
INNER JOIN tbl_purchases
ON tbl_users.use:_id = tbl;purchases.use:_id

tbl users tbl users
user 1D name user 1D name
1 "Yiyin" 3 "Poulami"
2 "Ivan"
tbl purchases tbl purchases
user 1D amt user 1D amt
3 $20 2 $10
2 S15

Why use a traditional/relational DB if basic
things like JOIN don't easily work right at scale?

example: Cassandra documentation

4)

STEP 3: CREATE FILES

The Cassandra Query Language (CQL) is very similar to SQL but suited for the JOINIess
structure of Cassandra.

https://cassandra.apache.org/_/quickstart.html

What if a server dies?

happens all the time when you have 1000s of machines

.o 1000s more...

Motivation for System Redesign

Features
* some classic features (like JOINS and transactions) may not
be essential
* scaling to many machines is essential
* fault tolerance is essential

Google Architecture

MapReduce (2004 paper) BigTable (2006 paper)
GFS: Google File System (2003 paper)

worker worker worker worker
machine machine machine machine

radical idea: base everything on lots of cheap, commodity hardware

Hadoop Ecosystem

Yahoo, Facebook, Cloudera, and others developed open-
source Hadoop ecosystem, mirroring Google's systems

Google Hadoop, Ist gen Modern
(paper only) (open source) Hadoop
Distributed File System GFS
Distributed Analytics MapReduce Hadoop
y P MapReduce
Distributed Database BigTable HBase

Ecosystem: Ambari, Avro, Cassandra, Chukwa, HBase, Hive,
Mahout, Ozone, Pig, Spark, Submarine, Tez, ZooKeeper

https://hadoop.apache.org/

https://hadoop.apache.org/

Outline: Hadoop Ecosystem

Motivation, Hadoop Ecosystem

Hadoop File System (HDFS)

HDFS: DataNodes store File Blocks

F1: "ABCD" F2: "EFGHIJKL"

DataNode
Computers

HDFS: DataNodes store File Blocks

F1: "ABCD" F2: "EFGHIJKL"
|

some files fit in a single block

"ABCD" (F1.1)

DataNode
Computers

Partitioning Across DataNodes

F1: "ABCD" F2: "EFGHIJKL"

bigger files are "partioned”
across multiple DataNodes
(blocksize option)

"ABCD" (F1.1) \

"IJKL" (F2.2
DataNode "EFGH" (F2.1) ()
Computers

Replication Across DataNodes

Fl: "ABCD" F2: "EFGHIJKL"

3x replication 2x relpication

"ABCD" (F1.1) "ABCD" (F1.1)

DataNode "EFGH" (F2 . 1) "EFGH" (FZ . 1)

€
Computers "IJKL" (F2.2)

"TJKL" (F2.2)

"ABCD" (F1.1)

Replication Across DataNodes

Fl1: "ABCD" F2: "EFGHIJKL"

3x replication 2x relpication

logical vs. physical blocks

"ABCD" (F1.1) "ABCD" (F1.1)
j "TJKL" (F2.2)

DataNode "EEFGH|" (F2 . 1) "EEFGH|" (FZ . 1)
Computers "ABCD" (F1.1)

"IJKL" (F2.2)

Replication Across DataNodes

Fl: "ABCD" F2: "EFGHIJKL"

3x replication 2x relpication

if a DataNode dies, we still have all the data.
Which file (F1 or F2) is safer in general?

"ABCD" (F1.1) "ABCD" (F1.1)

DataNode "EFGH" (F2.1) "EFGH" (F2.1)

€
Computers "IJKL" (F2.2)

Physical HDFS Blocks Are Stored as Local Files

F2: "EFGHI"

block size is specified
DataNode "EFGH" (F2.1) per HDFS file
L" (F2.2) this will cap the size of
\ the local files
. \ example: 64 MB block size,
Local File System , = and 67 MB file. Block | will be
(for example, ext4) stored in 64 MB file, and block
2 will be stored in a 3 MB file.
X / The second block isn't wasting

- space just because it is much

smaller that the block size.

Block Device
(for example, HDD)

Aside: Replication vs. Erasure Encoding

HDFS Strategies for handling node failure

Replication
* original strategy, used for new/hot data
* covered In CS 544

Erasure Encoding
* more space efficient, less /O efficient

* recent HDFS feature used for cold data (NOT covered in CS 544)

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

Boss (NameNode)/Worker Architecture

My Laptop NameNode
client program
|l want to
read F2 F2.1:nodes |, 2
F2.2: nodes 2, 3
—>
"IJKL" (F2.2)
DataNode "EFGH" (F2.1) "EFGH" (F2.1)
Computers
"TJKL" (F2.2)
DNI DN2 DN3

Boss (NameNode)/Worker Architecture

My Laptop NameNode
client program
locations F2.1:nodes I,2
= F2.2:nodes 2, 3
"IJKL" (F2.2)
DataNode "EFGH" (F2.1) "EFGH" (F2.1)
Computers
"TJKL" (F2.2)
DNI DN2 DN3

Boss (NameNode)/Worker Architecture

My Laptop NameNode

client program

F2.1:nodes I,2
F2.2: nodes 2, 3
network
transfer
' "TJKL" (F2.2)
DataNode "EFGH" (F2.1) \F\;FGH" (F2.1)

Computers
"TJKL" (F2.2)

DNI DN2 DN3

Boss (NameNode)/Worker Architecture

My Laptop

client program

1 want to
write F3
(3x replication)

NameNode

F2.1:nodes I,2

F2.2: nodes 2, 3
—>
"IJKL" (F2.2)
DataNode "EFGH" (F2.1) "EFGH" (F2.1)
Computers
"TJKL" (F2.2)
DN DN2 DN3

Boss (NameNode)/Worker Architecture

My Laptop NameNode
client program
locations F2.1:nodes I,2
= F2.2:nodes 2, 3
F3.1:nodes I,2,3
"IJKL" (F2.2)
DataNode "EFGH" (F2.1) "EFGH" (F2.1)
Computers
"IJKL" (F2.2)
DNI DN2 DN3

My Laptop

client program

XyZz

N\

Boss (NameNode)/Worker Architecture

NameNode

F2.1:nodes I,2
F2.2: nodes 2, 3

F3.1:nodes I, 2, 3

| NN

DataNode
Computers

"EFGH"

LA XYZ LA

(F2.1)

(F3.1)

DNI

"TJKL" (F2.2)

HEFGHH \

"LIJKL" (F2.2) \\\

"XYZ" (F3.1) "XYZ" (F3.1)
DN2 DN3

Boss (NameNode)/Worker Architecture

My Laptop

client program

XyZz

N\

|\

L

DataNode "EFGHT
Computers

LA XYZ LA

(F2.1)

(F3.1)

NameNode

F2.1:nodes |, 2
F2.2: nodes 2, 3

F3.1:nodes I, 2, 3

laptop’s nhetwork bandwidth
might be a bottleneck. ldeas?

DNI

"NLIKL" (F2.2)
"XYz" (F3.1)

N

"TJKL" (F2.2)

.

"XYz" (F3.1)

DN2

DN3

Pipelined Writes

My Laptop NameNode
client program
F2.1:nodes I,2
"xyz" F2.2: nodes 2, 3
\ F3.l:nodes |,2,3

"TJKL" (F2.2)
DataNode "EFGH" \ (F2.1) "EFGH" (F2.1)

Computers
"TJKL" (F2.2)

Yy 7" <F3.l>\
—»"XYZ" (F3.1) "Xyz" (F3.1)

DNI DN2 DN3

How are reads/writes amplified at disk level?

if a client writes 4 MB to a 2x
replicated file, how much data do
we write to hard drives!?

if a client reads 2 MB to a 3x
replicated file, how much data do
we read from hard drives?

DataNode
Computers

"EFGH" (F2.1)

"Xyz" (F3.1)

NameNode

F2.1:nodes I,2
F2.2: nodes 2, 3

F3.1:nodes I, 2,3

DNI

"EFGH" (F2.1)

"TJKL" (F2.2)

"TJKL" (F2.2)

"Xyz" (F3.1) "XYyz" (F3.1)

DN2

DN3

What are the tradeoffs of replication factor and block size!?

NameNode

benefits of high replication?

benefits of low replication? F2.1:nodes 1,2

F2.2: nodes 2, 3
benefits of large block size!?

benefits of small block size? F3.1:nodes 1,2, 3

"TJKL" (F2.2)
DataNode "EFGH" (F2.1) "EFGH" (F2.1)

Computers
"TJKL" (F2.2)

"Xyz" (F3.1)
"Xyz" (F3.1) "XYyz" (F3.1)

DNI DN2 DN3

How do we know when a DataNode fails?

Heartbeat Message

NameNode

* DataNode to NameNode

* Every T seconds (e.g, 3)

* Thresholds for no messages F2.1:nodes 1,2
stale (>M seconds) F2.2:nodes 2, 3
dead (>\I seconds) , F3.1:nodes 1,2, 3

* When dead, blocks might be
underreplicated and need new replicas A

stale (eventually dead) live live |

"TJKL" (F2.2)
DataNode "EFGH" (F2.1) "EFGH" (F2.1)

Computers

"TJKL" (F2.2)
"Xyz" (F3.1)

"XYz" (F3.1) "Xyz" (F3.1)

DNI DN2 DN3

Summary: Some Key |ldeas Applied to HDFS

To build complex systems...
* compose layers of subsystems

To scale out...
* partition your data

To handle faults...
* replicate your data

To detect faults...
e send heartbeats

To optimize I/O...
* pipeline writes

