
[544] Hadoop Ecosystem
Tyler Caraza-Harter

Learning Objectives

• describe the purpose of GFS, MapReduce, and BigTable (at a
high level), and similar Hadoop systems (HDFS, Spark, and
Cassandra)

• describe partitioning and replication and the motivation for
each technique

• identify the role that clients, NameNodes, and DataNodes
play for HDFS reads and writes

Outline: Hadoop Ecosystem

Motivation, Hadoop Ecosystem

Hadoop File System (HDFS)

Design: storage systems are generally built
as a composition of layered subsystems

You

hard
disk
drive

InnoDB

File System

Today: 3 layered systems
in the Hadoop Ecosystemdata

What if your data is too big for your server?

You

hard
disk
drive

InnoDB

File System

data

Option 1: scale up (buy better hardware)

hard
disk
drive

InnoDB

File System

What if your data is too big for your server?

RAID (redundant array of inexpensive disks)

hard
disk
drive

hard
disk
drive

more/faster CPUs
more RAM (memory)

more disks

Option 2: scale out (more machines)
What if your data is too big for your server?

hard
disk
drive

hard
disk
drive

hard
disk
drive

...1000s more...

where does the data actually go?

Approach: partition the tables

tbl_users
user ID name
1 "Yiyin"
2 "Ivan"
3 "Poulami"
...

tbl_purchases
user ID amt
2 $10
2 $15
3 $20
...

tbl_users
user ID name
1 "Yiyin"
2 "Ivan"

tbl_users
user ID name
3 "Poulami"
...

tbl_purchases
user ID amt
3 $20
...

tbl_purchases
user ID amt
2 $10
2 $15

Approach: send queries to multiple DBs...

SELECT * FROM tbl_purchase WHERE amt > 12

tbl_users
user ID name
1 "Yiyin"
2 "Ivan"

tbl_users
user ID name
3 "Poulami"
...

tbl_purchases
user ID amt
3 $20
...

tbl_purchases
user ID amt
2 $10
2 $15

...combine results

SELECT * FROM tbl_purchase WHERE amt > 12

tbl_users
user ID name
1 "Yiyin"
2 "Ivan"

tbl_users
user ID name
3 "Poulami"
...

tbl_purchases
user ID amt
3 $20
...

tbl_purchases
user ID amt
2 $10
2 $15

tbl_purchases
user ID amt
2 $15
3 $20

What is a query that would break things?

SELECT ...

tbl_users
user ID name
1 "Yiyin"
2 "Ivan"

tbl_users
user ID name
3 "Poulami"
...

tbl_purchases
user ID amt
3 $20
...

tbl_purchases
user ID amt
2 $10
2 $15

What is a query that would break things?

SELECT * FROM tbl_users
INNER JOIN tbl_purchases
ON tbl_users.user_id = tbl_purchases.user_id

tbl_users
user ID name
1 "Yiyin"
2 "Ivan"

tbl_users
user ID name
3 "Poulami"
...

tbl_purchases
user ID amt
3 $20
...

tbl_purchases
user ID amt
2 $10
2 $15

Why use a traditional/relational DB if basic
things like JOIN don't easily work right at scale?

https://cassandra.apache.org/_/quickstart.html

example: Cassandra documentation

What if a server dies?

hard
disk
drive

hard
disk
drive

hard
disk
drive

...1000s more...

happens all the time when you have 1000s of machines

Motivation for System Redesign

Features
• some classic features (like JOINS and transactions) may not

be essential
• scaling to many machines is essential
• fault tolerance is essential

Google Architecture

hard
disk
drive

worker
machine

hard
disk
drive

worker
machine

hard
disk
drive

worker
machine

hard
disk
drive

worker
machine

GFS: Google File System (2003 paper)

MapReduce (2004 paper) BigTable (2006 paper)

radical idea: base everything on lots of cheap, commodity hardware

Hadoop Ecosystem

Distributed File System GFS

Distributed Analytics MapReduce

Distributed Database BigTable

Google
(paper only)

HDFS

Hadoop
MapReduce

HBase

Hadoop, 1st gen
(open source)

Spark

Cassandra

Modern
Hadoop

Yahoo, Facebook, Cloudera, and others developed open-
source Hadoop ecosystem, mirroring Google's systems

https://hadoop.apache.org/Ecosystem: Ambari, Avro, Cassandra, Chukwa, HBase, Hive,
Mahout, Ozone, Pig, Spark, Submarine, Tez, ZooKeeper

https://hadoop.apache.org/

Outline: Hadoop Ecosystem

Motivation, Hadoop Ecosystem

Hadoop File System (HDFS)

HDFS: DataNodes store File Blocks

DataNode
Computers

F1: "ABCD" F2: "EFGHIJKL"

HDFS: DataNodes store File Blocks

F1: "ABCD" F2: "EFGHIJKL"

"ABCD" (F1.1)

some files fit in a single block

DataNode
Computers

Partitioning Across DataNodes

F1: "ABCD" F2: "EFGHIJKL"

"ABCD" (F1.1)

bigger files are "partioned"
across multiple DataNodes

(blocksize option)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

Replication Across DataNodes

F1: "ABCD" F2: "EFGHIJKL"

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

2x relpication3x replication

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

Replication Across DataNodes

F1: "ABCD" F2: "EFGHIJKL"

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

2x relpication3x replication

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

logical vs. physical blocks

Replication Across DataNodes

F1: "ABCD" F2: "EFGHIJKL"

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

2x relpication3x replication

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

if a DataNode dies, we still have all the data.
Which file (F1 or F2) is safer in general?

Physical HDFS Blocks Are Stored as Local Files

F2: "EFGHI"

"EFGH" (F2.1)
DataNode

block size is specified
per HDFS file

this will cap the size of
the local files

example: 64 MB block size,
and 67 MB file. Block 1 will be
stored in 64 MB file, and block
2 will be stored in a 3 MB file.
The second block isn't wasting
space just because it is much
smaller that the block size.

"I" (F2.2)

Local File System
(for example, ext4) file file

Block Device
(for example, HDD)

Aside: Replication vs. Erasure Encoding

HDFS Strategies for handling node failure

Replication
• original strategy, used for new/hot data
• covered in CS 544

Erasure Encoding
• more space efficient, less I/O efficient
• recent HDFS feature used for cold data (NOT covered in CS 544)

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

Boss (NameNode)/Worker Architecture

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

My Laptop

client program
I want to
read F2

Boss (NameNode)/Worker Architecture

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

My Laptop

client program

locations

Boss (NameNode)/Worker Architecture

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

My Laptop

client program

network
transfer

Boss (NameNode)/Worker Architecture

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

My Laptop

client program I want to
write F3

(3x replication)

Boss (NameNode)/Worker Architecture

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

My Laptop

client program

locations

F3.1: nodes 1, 2, 3

Boss (NameNode)/Worker Architecture

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

My Laptop

client program

"xyz"

"XYZ" (F3.1)
"XYZ" (F3.1) "XYZ" (F3.1)

F3.1: nodes 1, 2, 3

Boss (NameNode)/Worker Architecture

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

My Laptop

client program

"xyz"

"XYZ" (F3.1)
"XYZ" (F3.1) "XYZ" (F3.1)

laptop's network bandwidth
might be a bottleneck. Ideas?

F3.1: nodes 1, 2, 3

Pipelined Writes

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

My Laptop

client program

"xyz"

"XYZ" (F3.1)
"XYZ" (F3.1) "XYZ" (F3.1)

F3.1: nodes 1, 2, 3

How are reads/writes amplified at disk level?

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

"XYZ" (F3.1)
"XYZ" (F3.1) "XYZ" (F3.1)

F3.1: nodes 1, 2, 3

if a client writes 4 MB to a 2x
replicated file, how much data do

we write to hard drives?

if a client reads 2 MB to a 3x
replicated file, how much data do

we read from hard drives?

What are the tradeoffs of replication factor and block size?

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

"XYZ" (F3.1)
"XYZ" (F3.1) "XYZ" (F3.1)

F3.1: nodes 1, 2, 3

benefits of high replication?

benefits of large block size?

benefits of low replication?

benefits of small block size?

How do we know when a DataNode fails?

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

"XYZ" (F3.1)
"XYZ" (F3.1) "XYZ" (F3.1)

F3.1: nodes 1, 2, 3

live livestale (eventually dead)

Heartbeat Message
• DataNode to NameNode
• Every T seconds (e.g., 3)
• Thresholds for no messages
stale (>M seconds)
dead (>N seconds)

• When dead, blocks might be
underreplicated and need new replicas

Summary: Some Key Ideas Applied to HDFS

To build complex systems...
• compose layers of subsystems

To scale out...
• partition your data

To handle faults...
• replicate your data

To detect faults...
• send heartbeats

To optimize I/O...
• pipeline writes

