
[544] Spark SQL
Tyler Caraza-Harter



Learning Objectives

• create Hive tables and views as preparation for Spark SQL 
queries

• write queries that pull together related data (distinct, group 
by, windowing, joining)

• use a combination of SQL and DataFrame operations as part 
of a single calculation



Outline

Views and Tables

Grouping

Joining



X Y
A 1
B 2
A 3
C 4

df = spark.read.format("parquet").load("orig.parquet").where("X = 'A'")

df.write.saveAsTable("mytable") df.createTempView("myview")

X Y

A 1
A 3

orig.parquet

mytable
(parquet files in HDFS)

X Y

description of how to 
get data on demand

myview
(a query with a name)

mytable vs. myview
• which one is faster to create?
• which one takes less space?
• which one is faster if we sum up the Y column?

Tables and Views

1 2

a bit like an RDD!



Demos...



Outline

Views and Tables

Grouping

Joining



X Y

A 1
B 2
A 3
C 4

DISTINCT

X

A
B
CDISTINCT X



GROUPS, AGGREGATES

GROUPS

X Y

A 1
A 3

X Y

B 2

X Y

A 1
B 2
A 3
C 4

X Y

C 4

X TOTAL

A 4
B 2
C 4

AGGREGATES
(1 row per group)



PARTITIONS, WINDOW FUNCTIONS

SQL PARTITIONS

X Y

A 1
A 3

X Y

B 2

X Y

A 1
B 2
A 3
C 4

X Y

C 4
WINDOW CALCULATIONS
(multiples row per partition)

X PERC ROWNUM

A 25 2
A 75 1
B 100 1
C 100 1



Nested/chained grouping

X Y

A 1
B 3
A 2
B 3

X Y Row Count

A 1 1

B 3 2

A 2 1

X Y Categories Row Count

A 2 2

B 1 2

Multiple grouping levels
• SQL uses nested queries (or complicated WITH statements)
• DataFrames can chain multiple groupby's together

group by X,Y group by X



Demos...

TopHat



Outline

Views and Tables

Grouping

Joining



Joining

guest_id day

A Tue
A Mon
B Tue
B Wed
C Wed

band_id day

X Mon

X Tue

Y Tue

which bands did each guest at the festival see?
INNER JOIN on visits.day = performances.day

visits

performances

equi join

many-to-many relationship:
we join on day

each day has many visits
each day has many performances



Joining

guest_id day

A Tue
A Mon
B Tue
B Wed
C Wed

band_id day

X Mon

X Tue

Y Tue

which bands did each guest at the festival see?
INNER JOIN on visits.day = performances.day

guest_id day

A Tue

B Tue

band_id day

X Tue

Y Tue

guest_id day

B Wed

C Wed

band_id day

X Mon

guest_id day

A Mon

visits

performances

equi join

Joining is logically similar to 
grouping, but on two tables.

To find matches, we need to bring 
portions of each table with the same 

day together to the same place.



Joining

guest_id day

A Tue
A Mon
B Tue
B Wed
C Wed

band_id day

X Mon

X Tue

Y Tue

which bands did each guest at the festival see?
INNER JOIN on visits.day = performances.day

guest_id day

A Tue

B Tue

band_id day

X Tue

Y Tue

guest_id day

B Wed

C Wed

band_id day

X Mon

guest_id day

A Mon

guest_id band_id day

A X Tue
A Y Tue
B X Tue
B Y Tue
A X Mon

visits

performances

equi join

every combination



Joining

guest_id day

A Tue
A Mon
B Tue
B Wed
C Wed

band_id day

X Mon

X Tue

Y Tue

which guests came on a day but didn't see a performance?
LEFT JOIN on visits.day = performances.day

guest_id day

A Tue

B Tue

band_id day

X Tue

Y Tue

guest_id day

B Wed

C Wed

band_id day

X Mon

guest_id day

A Mon

guest_id band_id day

A X Tue
A Y Tue
B X Tue
B Y Tue
B NULL Wed
C NULL Wed
A X Mon

visits

performances

equi join

every combination



Joining

guest_id day

A Tue
A Mon
B Tue
B Wed
C Wed

band_id day

X Mon

X Tue

Y Tue

which guests never saw a performance?
LEFT JOIN on visits.day = performances.day

guest_id day

A Tue

B Tue

band_id day

X Tue

Y Tue

guest_id day

B Wed

C Wed

band_id day

X Mon

guest_id day

A Mon

guest_id band_id day

A X Tue
A Y Tue
B X Tue
B Y Tue
B NULL Wed
C NULL Wed
A X Mon

visits

performances

equi join

every combination

guest_id performances
C 0

group by guest,
count not null,
having 0 count



Demos...


