544 Py lorch Machine Learning

Tyler Caraza-Harter

Outline

Machine Learning, Major ldeas

Deep Learning

Py Torch
* (Calculations at DAGs
* Machine Learning as Optimization

Machine Learning, Major Ideas

Categories of Machine Learning:
* Reinforcement learning: agent makes series of actions to maximize reword
* Unsupervised learning: looking for generate patterns
* Supervised learning: train models to predict unknowns (today)

Models are functions that return predictions:
def my model () :
numeric (1,2, 3) I1s "regression”
return some prediction ~
categorical (A, B, C) is "classification”
Example:

def weather forecast () :

return temp TOmMOrrow

Machine Learning, Major Ideas

Categories of Machine Learning:
* Reinforcement learning: agent makes series of actions to maximize reword
* Unsupervised learning: looking for generate patterns
* Supervised learning: train models to predict unknowns (today)

Models are functions that return predictions:

def my model () : computation usually involves some
calculations (multiply, add) with various
numbers (parameters). Training is finding
parameters that result in good predictions
for known training data

<=

return some prediction
Example:
def weather forecast () :

return temp TOmMOrrow

Learning from Data

X1 x2 vy
0O 2 8 5
1 9 2 6
2 4 10
3 7 9 7
4 2 2 3
5 3 4 3
6 3 5 9
7 7 1 4
8 6 6 3
o 4 3[2)
10 1 2|2 how can the cases where we DO know v help
us predict the cases where we do not!
1M1 2 9|2
_/

Learning from Data

train

validation

test

X1 x2 vy

\
o
(0]
)

-
N
»

RN
o

|

WIN
N ©
w

wr

N ol

H ©
X

(o)}
w

(
| 0 N Oo|joa b~

A O N O WIW N N © DN
D
w

w
._',k

random split

Learning from Data

fit/train some models

train 1

> < algorithm A algorithm B

validation

test

Learning from Data

X1 x2 vy
(o 2 8 5\
tran] 1 9 2 6
2 4 10
3 7 9|7 make predictions

validaton | 4 2 2|3
5 3 4|3
< =
6 3 5 9
test 7 7 1 4

8 6 6 3 l
_ Y,
?

9 4 3 7~ 8

10 1 2 2 3

1M 2 9 ? 4

Learning from Data

X1 x2 vy
(0 2 8 5\
train 1T 9 2 6
2 4 10
_ =.<
(
3 7 9|7 |
which model
validation 4 2 213 predicts better? winner!
5 3 4\3)
r e
6 3 5 9 model A
test 7 7 1 4
8 6 6 3 l
_ J
SR 3
10 1 2 2 3
1M1 2 9 ? 4
_/

Learning from Data

x1 x2 vy why might the winning model do worse on
4 0O 2 8 5\ the test data than the validation data?
tran|] 1 9 2 6
2 4 10
3 7 9 7
validation | 4 2 2 3 winner!
5 3 4 33)
(- \
6 3 5 9 > model A
test 7 7 1 4
8 6 6 3 l
_ Y,
9 4 3 ? T@
how good does the
0 1 272 3 chosen model do
1M1 2 9 ? 3 on the test data?
_/

models that do good on train data but bad
on validation/test data have "overfitted"

Learning from Data

train 1

WIIN

validation

winner!

~

5 9 model A
test

©| 0 N OoO|joa b~

Y

deploy the model. Use 1t for
predicting real unkwowns!

%)
N
(=~ @)

Outline

Machine Learning, Major Ideas

Deep Learning

Py Torch
* (Calculations at DAGs
* Machine Learning as Optimization

LINEAR ALGEBRA

Deep Learning and Learning

© from patg

Know x (maybe a vector of numbers), want to predict v.

v = model(x) = Lu(R(Lr 1 (R((LICON)) SRS RANT

function nesting = a pipeline

— Sigmoid
41 — ReLU

L(x) = Wx + b R 24

Outline

Machine Learning, Major Ideas

Deep Learning

Py Torch
* (Calculations at DAGs
* Machine Learning as Optimization

Computation graph implementing
the equation z =2x(a-b) + ¢

@ python
Machine
Learning
with PyTorch
and Scikit-Learn

Deowvelop machine learning and deep learning
meodels with Python

Packt

a, b, c: Input tensors (scalar)
r,, r,: Intermediate result tensors

z: Final result

Figure 13.1: How a computation graph works

PyTorch can calculate how small changes in one variable in the DAG impacts another.
Example: if b increases by 0.001, z will decrease by 0.002. The gradient of z with respect to b is -2.

Optimization: if we want z to be large, decreasing b a little (how much?) is probably a good idea.

_— \
Cead T
Com

x and y are known (these are matrices/vectors).
what should weight and bias (parameters) be!

def model(data):
return weisht @ data + bias MSE (means squared error) measures how
different predictions are from real values, so we
p = model(x) want small loss (optimization).

loss = MSE(y, p)
If gradient of loss with respect to weight Is

positive, then decrease weight.

epoch 0 epoch | epoch 2

a xa y SN a xz y S a xz y SN
1 2 3 8 1 2 3 8 1 2 3 8
4 8 17 4 8 17 4 8 17
0 7 80 0 7 80 0 7 80
3 3 55 3 3 55 3 3 55
2 9 85 2 9 85 2 9 85
> 220y update > 220y update > 220y update
params params params

>

gradient descent. slow (consider all data each update), and data might not fit in RAM

epoch 0 epoch | epoch 2

x1 x2 y Scan shuffle « x2 y Scan shuffle a x2 y Scan
1 2 3 8 3 3 55 2 9 8 5
4 8 17 5 2 9 0 7
vy update vy update 0 8 91 ¢ update
0 7 80 4 8 17 5 2 9 0
3 3 55
Y update 2 9 85| § update a 8 171 ¥ update
2 9 8 5 0 7 80 3 3 55
5 2 9 0 1 2 3 8
v update v update 1 2 381 v ypdate

>

stochastic gradient descent. shuffle each time, process in small batches that fit in memory

Demos...

