544 Processes and T hreads

Tyler Caraza-Harter

Motivation

Modern CPUs have many cores (maybe dozens)
more cores rather than faster cores

a simple Python program can use at most ONE core
(less if 1t accesses files or the Internet)

Understanding threads and processes will:
* let us write programs that fully utilize CPU resources

* decide the structure of our concurrent program (threads or processes)
depending on the situation

Processes and Address Spaces

Address spaces
¢ A S a running
* Each process has it's own

The same virtual address generally refers to different memory in different processes
* Regular processes cannot directly access or other addr spaces

virtual address
spaces

physical memory

physical addresses

Processes and Address Spaces

Address spaces
¢ A S a running
* Each process has it's own
* The same virtual address generally refers to different memory in different processes
* Regular processes cannot directly access or other addr spaces
* Address spaces can have holes (N is usually MUCH bigger than M)
* Physical memory for a process need not be contiguous

virtual address
spaces

physical memory

physical addresses

What goes in an address space?

def g(y): Frames
— return y * 2 Global frame
def £)
return g(x+1) f
matrix

matrix = [[1,2], [3,4]]
f(10) f

x 10

https://pythontutor.com/

Objects

function

g(y)

function

f(x)

list

virtual address what goes here?
spaces

https://pythontutor.com/

What goes in an address space?

def 9()’)3 Frames Objects
- return y ¥ 2 Global frame function
g(y)
def £(x): g |
return g(x+1) f :c“?;t)")”
matrix
matrix = [[1321, [334]] list list
f(10) f 0."1/,0 1
‘ x 10 .\ 112
\Iist
& o |1
y 11 3|4
&
. code
virtual address (Python) stack heap
Spaces

Note: code and heap generally not contiguous

What goes in an address space?

def g(y): Frames Objects
- return y ¥ e Global frame function
g(y)
def f(x): g |
return g(x+1) f 2???”
matrix
matrix = [[13213 [3,4]] list list
f(10) f ot+1//,_o 1
x 10 .\ 1]°2
\Iist
& o |1
y 11 3| 4
&
some packages
(like numpy)
. code code
virtual address (Python) (©) stack heap
spaces

How does code execute!

def g(y): Frames Objects
@ return y * 2 Global frame function
g(y)
def f(x): ? |
return g(x+1) f ;“?;t)"’”
matrix
matrix = [[1,2], [3,4]] list list
f(10) f 4/’ 0 |1
x 10 .\ 1172
\Iist
g 0 1
y 11 3| 4
&
instruction pointer
code code
i k h
virtual address (Python) () stac €ap
spaces

How does code execute!

CPUs
* (CPUs are attached to at most one instruction pointer at any given time
* they run code by executing instructions and advancing the instruction pointer

* Note: interpreter left out for simplicity (CPU points to interpreter code, which
points to Python bytecode)

code code

virtual address (Python) (C)
spaces

stack heap

How does code execute!

CPUs
* (CPUs are attached to at most one instruction pointer at any given time
* they run code by executing instructions and advancing the instruction pointer

* Note: interpreter left out for simplicity (CPU points to interpreter code, which
points to Python bytecode)

code code

virtual address (Python) (C)
spaces

stack heap

How does code execute!

CPUs
* (CPUs are attached to at most one instruction pointer at any given time
* they run code by executing instructions and advancing the instruction pointer

* Note: interpreter left out for simplicity (CPU points to interpreter code, which
points to Python bytecode)

. code code
virtual address (Python) (©) stack heap

spaces

call numpy function

Threads

have their own

and

code

(©)

DrocCess:
virtual address code
spaces (Python)
process:

virtual address code
spaces (Python)

code

(©)

- but share the

heap

heap

Context Switch

Schedulers
« CPU IS an Important sub system in an
e schedulers decide when to between threads

* context swich: change which thread a CPU is running

Processes

Context Switch

Schedulers
« CPU IS an Important sub system in an
e schedulers decide when to between threads

* context swich: change which thread a CPU is running

context switch!

context switch! o
thread in diff process

same process, diff thread

v VvV v v

Processes

Scheduling Restrictions: Blocked Threads

Threads can be in one of three states

. : CPU is executing it
. : walting on something other than CPU (network;, input, disk; etc)
. : scheduler can choose to context switch to it

CPU cannot advance instruction
pointer until network request finishes

= r = requests.get (URL)
total = sum(r.json())
print (total)

running ready running

(* + *) + blocked +

Processes

Efficient Use of Compute Resources

Wasted cores: (1) not enough threads (2) blocked threads

For 100% CPU utilization (difficult goal)
* need at least one ready/running thread for each CPU core
* generally need more threads than cores (threads are often blocked)
* threads could be in one process (or many)

applications

* good when multiple threads need to access frequently modified data structures
* new kinds of bugs possible (race conditions, deadlock)

applications

* easler to program (or just manually launch several processes in background)
* better at keeping multiple cores busy simultaneously (Python specific)

Both approaches work well for dealing with blocked threads

Coding Demos,Worksheet

Thread operations

* 1 =threading 0O
¢ 1 (target=?7%!, args=[{11?])
* tjon(

-t 0

Python's GIL (Global Interpreter Lock)

code code
(Python) (C)

Global Interpreter Lock
* Only one thread can be running Python code In a process at once
e Python threads are bad for using multiple cores
* They're still useful for threads blocked on I/O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

code code
(Python) (C)

Global Interpreter Lock
* Only one thread can be running Python code In a process at once
e Python threads are bad for using multiple cores
* They're still useful for threads blocked on I/O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

code code
(Python) (C)

Global Interpreter Lock
* Only one thread can be running Python code In a process at once
e Python threads are bad for using multiple cores
* They're still useful for threads blocked on I/O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

code code
(Python) (C)

Global Interpreter Lock
* Only one thread can be running Python code In a process at once
e Python threads are bad for using multiple cores
* They're still useful for threads blocked on I/O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

code code
(Python) (C)

Global Interpreter Lock
* Only one thread can be running Python code In a process at once
e Python threads are bad for using multiple cores
* They're still useful for threads blocked on I/O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

Global Interpreter Lock
* Only one thread can be running Python code In a process at once
e Python threads are bad for using multiple cores
* They're still useful for threads blocked on I/O
* Some Python libraries using other languages allow parallelism

