
[544] Processes and Threads
Tyler Caraza-Harter



Motivation

Modern CPUs have many cores (maybe dozens)

Trend: more cores rather than faster cores

Problem: a simple Python program can use at most ONE core 
(less if it accesses files or the Internet)

Understanding threads and processes will:
• let us write programs that fully utilize CPU resources
• decide the structure of our concurrent program (threads or processes) 

depending on the situation



Processes and Address Spaces

physical memory

0 M
physical addresses

virtual address
spaces

0 N 0 N

Address spaces
• A process is a running program
• Each process has it's own virtual address space
• The same virtual address generally refers to different memory in different processes
• Regular processes cannot directly access physical memory or other addr spaces



Processes and Address Spaces

physical memory

0 M
physical addresses

virtual address
spaces

0 N 0 N

Address spaces
• A process is a running program
• Each process has it's own virtual address space
• The same virtual address generally refers to different memory in different processes
• Regular processes cannot directly access physical memory or other addr spaces
• Address spaces can have holes (N is usually MUCH bigger than M)
• Physical memory for a process need not be contiguous



What goes in an address space?

virtual address
spaces

what goes here?

0 N

https://pythontutor.com/

https://pythontutor.com/


What goes in an address space?

virtual address
spaces

0 N

code
(Python)

stack heap

Note: code and heap generally not contiguous



What goes in an address space?

virtual address
spaces

0 N

code
(Python)

stack heapcode
(C)

some packages
(like numpy)



How does code execute?

virtual address
spaces

0 N

code
(Python)

stack heapcode
(C)

instruction pointer



How does code execute?

virtual address
spaces

0 N

code
(Python)

stack heapcode
(C)

CPUs
• CPUs are attached to at most one instruction pointer at any given time
• they run code by executing instructions and advancing the instruction pointer
• Note: interpreter left out for simplicity (CPU points to interpreter code, which 

points to Python bytecode)



How does code execute?

virtual address
spaces

0 N

code
(Python)

stack heapcode
(C)

CPUs
• CPUs are attached to at most one instruction pointer at any given time
• they run code by executing instructions and advancing the instruction pointer
• Note: interpreter left out for simplicity (CPU points to interpreter code, which 

points to Python bytecode)



How does code execute?

virtual address
spaces

0 N

code
(Python)

stack heapcode
(C)

call numpy function

CPUs
• CPUs are attached to at most one instruction pointer at any given time
• they run code by executing instructions and advancing the instruction pointer
• Note: interpreter left out for simplicity (CPU points to interpreter code, which 

points to Python bytecode)



Threads

virtual address
spaces

code
(Python)

stack heapcode
(C)

Threads have their own instruction pointers and stacks, but share the heap.

Single-threaded process:

virtual address
spaces

code
(Python)

stack heapcode
(C)

Multi-threaded process:

stack



Context Switch

processes

Schedulers
• CPU scheduler is an important sub system in an operating system
• schedulers decide when to context switch between threads
• context swich: change which thread a CPU is running



Context Switch

processes

Schedulers
• CPU scheduler is an important sub system in an operating system
• schedulers decide when to context switch between threads
• context swich: change which thread a CPU is running

context switch!
same process, diff thread

context switch!
thread in diff process



Scheduling Restrictions: Blocked Threads

processes

Threads can be in one of three states
• running: CPU is executing it
• blocked: waiting on something other than CPU (network, input, disk, etc)
• ready: scheduler can choose to context switch to it

running running
blocked

ready

r = requests.get(URL)

total = sum(r.json())

print(total)

CPU cannot advance instruction 
pointer until network request finishes



Efficient Use of Compute Resources

Wasted cores: (1) not enough threads (2) blocked threads

For 100% CPU utilization (difficult goal)
• need at least one ready/running thread for each CPU core
• generally need more threads than cores (threads are often blocked)
• threads could be in one process (or many)

Multi-threaded applications
• good when multiple threads need to access frequently modified data structures
• new kinds of bugs possible (race conditions, deadlock)

Multi-process applications
• easier to program (or just manually launch several processes in background)
• better at keeping multiple cores busy simultaneously (Python specific)

Both approaches work well for dealing with blocked threads



Coding Demos, Worksheet

Thread operations
• t = threading.Thread()
• t.start(target=????, args=[????])
• t.join()
• t.get_native_id()



Python's GIL (Global Interpreter Lock)

code
(Python)

code
(C)

Global Interpreter Lock
• Only one thread can be running Python code in a process at once
• Python threads are bad for using multiple cores
• They're still useful for threads blocked on I/O
• Some Python libraries using other languages allow parallelism

waiting for GIL

waiting for file



Python's GIL (Global Interpreter Lock)

code
(Python)

code
(C)

Global Interpreter Lock
• Only one thread can be running Python code in a process at once
• Python threads are bad for using multiple cores
• They're still useful for threads blocked on I/O
• Some Python libraries using other languages allow parallelism

waiting for file



Python's GIL (Global Interpreter Lock)

code
(Python)

code
(C)

Global Interpreter Lock
• Only one thread can be running Python code in a process at once
• Python threads are bad for using multiple cores
• They're still useful for threads blocked on I/O
• Some Python libraries using other languages allow parallelism

waiting for filewaiting for GIL



Python's GIL (Global Interpreter Lock)

code
(Python)

code
(C)

Global Interpreter Lock
• Only one thread can be running Python code in a process at once
• Python threads are bad for using multiple cores
• They're still useful for threads blocked on I/O
• Some Python libraries using other languages allow parallelism

waiting for GILwaiting for GIL



Python's GIL (Global Interpreter Lock)

code
(Python)

code
(C)

Global Interpreter Lock
• Only one thread can be running Python code in a process at once
• Python threads are bad for using multiple cores
• They're still useful for threads blocked on I/O
• Some Python libraries using other languages allow parallelism

waiting for GILwaiting for GIL

waiting for net



Python's GIL (Global Interpreter Lock)

code
(Python)

code
(C)

Global Interpreter Lock
• Only one thread can be running Python code in a process at once
• Python threads are bad for using multiple cores
• They're still useful for threads blocked on I/O
• Some Python libraries using other languages allow parallelism

waiting for GIL

waiting for net


