
CS 544, Locks Worksheet

thread 1 thread 2 x L diff y
---------	 	 ---------	 	 2	 [5,4]	 	 None	 	 4

	 	 	 y += 1		 	 	 	 	 	 	 5

lock.aquire()

	 	 	 y += 2		 	 	 	 	 	 	 7

L.append(3)	 	 	 	 	 	 [5,4,3]

	 	 	 lock.acquire()		 	 	 	 	

	 	 	 diff = len(L) - x	 	 	 	 1

	 	 	 lock.release()	

x += 1		 	 	 	 	 3	 	 	 	 	

lock.release()	

Problem 1: which statement executions above are not possible in a correct
locking system? Which statements would cause exceptions? If the locking
system behaves correctly, what are possible values for diff at the end?

Problem 2: assume q is 2 before the threads start running. Write out an
interleaving (for example, something like A, B, C, ...) that leads to an
ZeroDivisionError.

thread 1
lock.acquire()
L.append(3)
x += 1
lock.release()

thread 2
y += 1
y += 2
lock.acquire()
diff = len(L) - x
lock.release()

tim
e

thread 1
if q != 0: #A
 lock.acquire() #B
 r = 1/q #C
 lock.release() #D

thread 2
lock.acquire() #X
q = 0 #Y
lock.release() #Z

a = ___________

b = ___________

c = ___________

Problem 3: how do a, b, and c end? Write "?" if it is impossible to know.

thread 1 thread 2 A B
---------	 	 	 ---------	 	 	 	 30	 40	

Problem 4: write an interleaving that leads to "deadlock" (both threads blocked).

lock = threading.Lock()
x = 1

def task():
 global x
 with lock:
 x = 2

t = threading.Thread(target=task)
a = x
t.start()
with lock:
 b = x
t.join()
c = x

thread 1
lockA.acquire()
lockB.acquire()
A += 1
B -= 1
lockA.release()
lockB.release()

thread 2
lockB.acquire()
lockA.acquire()
B += 2
A -= 2
lockB.release()
lockA.release()

tim
e

