544 File Systems

Tyler Caraza-Harter

Outline

Block Devices (overview, HDD, SSD)
File Systems

Demos

Block Devices

Memory s

“.
o I 2 3 4 5

Block storage devices are accessed in units of (512 bytes, few KBs, etc)

512 bytes 512 bytes 512 bytes

0 | 2

Caching/Buffering

512 bytes 512 bytes 512 bytes
0

| 2

ghcnd-stations.txt

We might want to process one line a time, but it would be
wasteful to repeatedly read the same block from the device

* alinux page cache stores pages from files in RAM
(usually 4KB pages, often larger than device blocks)

* Python (and other) programs might buffer chunks of data to avoid
asking Linux too many times for small pieces of data

Caching/Buffering

P p—

, 79 thr; 1

l] . :

3 . 0.00 0.0¢
] |
]

III\\lllq 260M/1.9
%)

4

| \

page cache, could evict if needed only counts non-cache memory

We might want to process one line a time, but it would be
wasteful to repeatedly read the same block from the device

* alinux stores pages from files in RAM
(usually 4KB pages, often larger than device blocks)

* Python (and other) programs might chunks of data to avoid
asking Linux too many times for small pieces of data

Small Reads (<4KB): Performance

goal: collect all station IDs

ghcnd-stations.txt

start = time.time ()
with open ("ghcnd-stations.txt")
for line in f:
stations.append(line[:117])
print (time.time () - start)

as f:

simple version that reads everything: 66 ms

format issue: no good way to
ready one column without everything else

stations = []
line len = 86

start = time.time ()
with open ("ghcnd-stations.txt",
offset = 0
while True:
f.seek(offset)
station = str(f.read(11l),
offset += line len

"rb", buffering=0)

"utf-g")

1f station:
stations.append(station)
else:
break

print (time.time () - start)

as f:

"optimized" version that only reads stations: | /1 ms

Hard Disk Drives (HDDs)

Steps to read/write

|, move head to correct track these steps dominate unless
2. wait for spinning disk to rotate until data is under head | transferring lots of data (few MBs)
3. transfer the data

Layout
e assign block numbers to platter locations so sequential (like 5,6,7,8, ...) reads/writes will be fast
* programmers should assume random accesses (like 2,9,5, |, ...) will be slow

Solid State Drives (SSDs) - Flash

Reading and writing
* NO moving parts
* inheriantly parallel

SSD internals:
* "block" and "page" have different meanings
* "page" => unit that we can read or write (couple KBs)
* pages cannot be individually re-written
* "block” => unit that is erased together (maybe |00s of KBs)

block

Solid State Drives (SSDs) - Flash

want to write X. Options:
* erase whole block and re-write A, B, and D too

e write X somewhere else

Solid State Drives (SSDs) - Flash

want to write X. Options:
* erase whole block and re-write A, B, and D too
e« write X somewhere else

disadvantages
* need extra bookkeeping (in SSD) to know where data is

* need to eventually move things around to reclaim the
space wasted by B

* strategy: sequentially write whole blocks (when possible)

HDDs vs. SSDs

Metrics
¢ capacity: how many bytes can we store!
* latency: how long does it take to start transferring data

* 1OPS (/O operations, of some max size, per second): how many small/random
transfers can we do per second

* throughput: how many bytes can we transfer per second

Metric: Relative to HDDS,

capacity worse

latency much better (no moving parts)

random IOPS even better — low latency AND in parallel
throughput (sequential) little better

throughput (random writes) better (but block erase is a concern)

throughput (random reads) much better

Partitions and RAID

Block devices can be divided into partitions:
0 M O N O P

nce=1:/home/trh# 1ls /dev/sdx

root@inst
-——

2 devices 4 partitions

RAID controllers (Redudant Array of Inexpensive Disks) can make multiple devices appear as one:

0 M

% 1 ~

0 N O N O N

Many configs use redundancy to avoid data loss when one device dies.

Outline

Block Devices (overview, HDD, 5SD)
File Systems

Demos

File Systems

Difficult: writing code to store data In
Easier: writing code to store data In

Files systems abstract storage for us. VWe write to data blocks without thinking about it by
writing data to files in a

read/write a file
\ /

local file system

read/write some blocks

Types of File System (FS)

local FS layered FS in-memory FS
read/write a file
read/write some blocks

pseudo FS network FS distributed FS

P T

server

cluster of worker machines

Types of File System (FS)

local FS layered FS in-memory FS

read/write a file
read/write some blocks

pseudo FS network FS distributed FS

P T

server

cluster of worker machines

Local File Systems

2KB
blocks:

How does a local FS use blocks?

Local File Systems

inode 9~

2KB blks: 247
blocks: size: 3KB

0 |

How does a local FS use blocks! Many possibilites. One example...

Files
* some metadata, like size, block locations
* each is represented by an "inode" structure (above file is fragmented)
* file extensions (like .txt) don't mean anything to the file system (just for documentation)

Local File Systems

inode p-TlAMode | file.txt: inode 0

2KB oiks: 24| blks: 3 A
blocks: size: 3KB

How does a local FS use blocks! Many possibilites. One example...

Files
* some metadata, like size, block locations
* each is represented by an "inode" structure (above file is fragmented)
* file extensions (like .txt) don't mean anything to the file system (just for documentation)

Directories
* special files containing name => inode mappings
* the same inode could be in multiple directories
* each file system has a "root" directory from which you can reach everything else recursively
« formatting creates initial structures (like the root directory)

File System Trees

Nesting of directories and files logically create "trees"

» technically DAGs (directed acyclic graphs) because the same inode number can have multiple names in
multiple directories

* leaves: files and empty directories

current working directory

relative path to E.txt: C/E. txt
absolute path to E.txt: /B/C/E. txt
relative path to D.csv: . . /A/D.csv
absolute path to D.csv: TopHat

Multiple File Systems:VWindows Approach

have multiple trees (each is a "drive")

J}@ do o .

local FS | local FS 2

e pent [EEoRaN

local FS 3

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

https://www.brit.co/fruit-salad-tree/

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sdal sda? (root FS) sdb|

local FS | local FS 2
o0 parton) [partiiend
local FS 3

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sdal sda? (root FS) sdb|

mount /dev/sdal /A

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sda? (root FS)

/o

\

mount /dev/sdal /A
mount /dev/sdbl /A/B

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sda? (root FS)

Note: each container has
it's own root file system
and mount namespace

/o

\

mount /dev/sdal /A
mount /dev/sdbl /A/B

Outline

Block Devices (overview, HDD, 5SD)
File Systems

Demos

