
[544] MapReduce and Spark
Tyler Caraza-Harter

Outline: MapReduce and Spark

Data Lakes

Hadoop MapReduce

Spark

Review: Data Warehouse

Figure 3-8. Simplified outline of ETL into a data warehouse.
(Chapter 3 of Data-Intensive Applications, by Kleppmann)

Data warehouse: storage + compute are tightly coupled (e.g., indexes)
• Efficient: coupling makes more optimization possible
• Limited: what if you want to do ML instead of running SQL queries?

"Data Lake" (new term for decoupled storage/compute for analytics)

Figure 3-8. Simplified outline of ETL into a data warehouse.
(Chapter 3 of Data-Intensive Applications, by Kleppmann)

scalable, distributed storage
(for example, HDFS)

table.parquet

data.csv

dog.jpeg

filing.pdf

cat.mp4

processing/compute engines

files

unstructured data

MapReduce Spark PyTorch

Outline: MapReduce and Spark

Data Lakes

Hadoop MapReduce

Spark

MapReduce

hard
disk
drive

hard
disk
drive

hard
disk
drive

hard
disk
drive

HDFS

Hadoop MapReduce HBase

DataNode DataNode DataNode DataNode

How do we answer questions?

SQL:

a query, "SELECT * FROM ..."

MapReduce

map function code
reduce function code
mapper/reducer counts
a file (or many)

Database results

MapReduce output files

How do we answer questions?

SQL:

a query, "SELECT * FROM ..."

MapReduce

map function code
reduce function code
mapper/reducer counts
a file (or many)

Database results

MapReduce output files

input/output files are generally in HDFS

How do we answer questions?

SQL:

a query, "SELECT * FROM ..."

MapReduce

map function code
reduce function code
mapper/reducer counts
a file (or many)

Database results

MapReduce output files

Mappers by example: what are the colors of the squares?

def map(key, value):
 ...

input.csv (in HDFS):
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

In SQL:
SELECT color FROM table WHERE shape = "square";

def map(key, value):
 ...

input.csv (in HDFS):
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

red,circle,3 0

zero or more output
key/value pairs

Mappers by example: what are the colors of the squares?

def map(key, value):
 ...

input.csv (in HDFS):
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

red,square,5 1

zero or more output
key/value pairs

Mappers by example: what are the colors of the squares?

def map(key, value):
 if value.shape = square:
 emit(key, value.color)

input.csv (in HDFS):
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

red,square,5 1

Mappers by example: what are the colors of the squares?

key value
1 red
3 green

def map(key, value):
 if value.shape = square:
 emit(key, value.color)

input.csv (in HDFS):
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

red,square,5 1

Mappers by example: what are the colors of the squares?

key value
1 red
3 green

what if the data is huge?

input.csv (in HDFS):
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

Mappers Run on Multiple Machines at Once

cluster of machines

mapper

mapper

input.csv (in HDFS):
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

Reducers

cluster of machines

mapper

mapper

reducer
a simple (default) reduce
task can combine output
of multiple mappers to

a single file

one key/value pair

key value
1 red
3 green

one key/
value pair

intermediate
data

Reducers

def reduce(key, values):
 for row in values:
 emit(key, row)

reducers can output exactly their input,
OR have further computation

Reducers

def reduce(key, values):
 count = 0
 for row in values:
 count = count + 1
 emit(key, count)

def map(key, value):
 emit(value.color, value)

color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

key value
blue blue, oval, 1
green green, square, 3
red red, circle, 3
red, red, square, 5

intermediate data is
grouped and sorted by key

reduce will be called 3 times (once for each
group). The calls could happen in one reduce

task (or be split over many)

Reducers

def reduce(key, values):
 count = 0
 for row in values:
 count = count + 1
 emit(key, count)

def map(key, value):
 emit(value.color, value)

color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

key value
blue blue, oval, 1
green green, square, 3
red red, circle, 3
red, red, square, 5

intermediate data is
grouped and sorted by key key value

blue 1

Reducers

def reduce(key, values):
 count = 0
 for row in values:
 count = count + 1
 emit(key, count)

def map(key, value):
 emit(value.color, value)

color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

key value
blue blue, oval, 1
green green, square, 3
red red, circle, 3
red, red, square, 5

intermediate data is
grouped and sorted by key key value

blue 1
green 1

Reducers

def reduce(key, values):
 count = 0
 for row in values:
 count = count + 1
 emit(key, count)

def map(key, value):
 emit(value.color, value)

color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

key value
blue blue, oval, 1
green green, square, 3
red red, circle, 3
red, red, square, 5

intermediate data is
grouped and sorted by key key value

blue 1
green 1
red 2

What is the SQL equivalent of this MapReduce program?

def reduce(key, values):
 count = 0
 for row in values:
 count = count + 1
 emit(key, count)

def map(key, value):
 emit(value.color, value)

color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

key value
blue blue, oval, 1
green green, square, 3
red red, circle, 3
red, red, square, 5

intermediate data is
grouped and sorted by key key value

blue 1
green 1
red 2

input.csv (in HDFS):
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

Multiple Reducers (for big intermediate data)

cluster of machines

mapper

mapper

reducer

each reduce task produces one output file.
a reduce task might take multiple keys.

all intermediate rows with the same key go to the same reducer.

reducer

output
file 1

output
file 2

shuffle
phase

2 reduce(...)
calls

1 reduce(...)
call

SQL => MapReduce

Map Phase
• SELECT, WHERE, GROUP BY, JOIN

Shuffle Phase (bringing related data to same place)
• ORDER BY, GROUP BY, JOIN

Reduce Phase
• SELECT, AGGREGATE, HAVING, JOIN

MapReduce is more flexible. (for example, how to do a
GROUP BY where one row goes to mutliple groups in SQL?)

Projects like HiveQL try to make MapReduce more accessible.

Data Locality: Avoid Network Transfers

cluster of machines

mapper

mapper

reducer

reducer

DataNode
DataNode

DataNode

DataNode

Run on same machines
• HDFS DataNodes
• MapReduce executor

Try to run mappers on machine
where DataNode has needed
data. Uses disk but not network.

Pipelines: Sequence of MapReduce Jobs

map reduceHDFS files HDFS files

map reduce HDFS files

map reduce HDFS files

map reduce HDFS files

Efficiency: is storing intermediate data in HDFS a good idea?
• replication on data we could re-compute seems wasteful (could set replication to 1x)
• could we sometimes connect output from one stage more directly to the next?
• treating each stage independently prevents optimization tools from improving the whole pipeline

Outline: MapReduce and Spark

Data Lakes

Hadoop MapReduce

Spark
• Resilient Distributed Datasets (RDDs)
• SQL and DataFrames
• Deployment

Intermediate Data: MapReduce vs. Spark

map reduceHDFS files HDFS files

map reduce HDFS files

operationsHDFS files RDD

operations HDFS files

Resilient Distributed Datasets (RDD)
• data lineage: record series of operations on other data necessary to obtain results
• lazy evaluation: computation only done when results needed (to write file, make plot, etc.)
• immutability: you can't change an RDD, but you can define a new one in terms of another

MapReduce

Spark

actual bytes

steps necessary to produce
data if/when needed

Review: PyTorch DAGs

Comparison
• PyTorch: results are computed immediately (eagerly), but lineage is

tracked for the purpose of computing gradients
• Spark: data lineage allows lazy computation of results, as needed

Data Lineage: Transformations and Actions

def mult2(row):
 return (row[0], row[1] * 2)

def onlyA(row):
 return row[0] == "A"

data = [
 ("A", 1),
 ("B", 2),
 ("A", 3),
 ("B", 4)
]

table = sc.parallelize(data)
double = table.map(mult2)
doubleA = double.filter(onlyA)
doubleA.collect()

goal: get 2 times the second column wherever the first column is "A"

[('A', 2),
 ('A', 6)]

The computation is a sequence of 4 operations. Operations come in two types:
• transformation: create a new RDD (lazy, so no execution yet). Here: parallelize, map, and filter.
• action: perform all operations in the graph to get an actual result. Here: collect.

Data Lineage: Transformations and Actions

def mult2(row):
 return (row[0], row[1] * 2)

def onlyA(row):
 return row[0] == "A"

data = [
 ("A", 1),
 ("B", 2),
 ("A", 3),
 ("B", 4)
]

table = sc.parallelize(data)
double = table.map(mult2)
doubleA = double.filter(onlyA)
doubleA.collect()

goal: get 2 times the second column wherever the first column is "A"

[('A', 2),
 ('A', 6)]

RDD RDD RDD

(table) (double) (doubleA)

list of
tuples

data
T T T A

(parallelize) (map) (filter) (collect)

are there alternative paths you could create from the start to end node?

Optimization

table = sc.parallelize(data)
double = table.map(mult2)
doubleA = double.filter(onlyA)
doubleA.collect()

goal: get 2 times the second column wherever the first column is "A"

[('A', 2),
 ('A', 6)]

RDD RDD RDD

(table) (double) (doubleA)

list of
tuples

data
T T T A

(parallelize) (map) (filter) (collect)

RDD RDD
T T

(filter) (map)

A
(collect)

Transformation vs. action
• transformation: intermediate results (means to an end)
• action: final results we care about
• this distinction creates opportunities for optimize, choosing a more efficient sequence of

transformations to reach the same endpoint
• tools need to know what transformations are doing (difficult with Python functions) to

automatically optimize

Partitions

RDD RDD RDD

(table) (double) (doubleA)

list of
tuples

data
T T T A

(parallelize) (map) (filter) (collect)

("A", 1)

In what granularity should data flow through the transformations?
• whole dataset: it could all proceed through, on transformation at a time, but might not

fit in memory
• row: in this pipeline, nothing prevents each row from passing through independantly,

but probably slower than computing in bulk
• partition: Spark users can specify the number of partitions for an RDD

data = [
 ("A", 1),
 ("B", 2),
 ("A", 3),
 ("B", 4)
]

data = [
 ("A", 1),
 ("B", 2),
 ("A", 3),
 ("B", 4)
]

sc.parallelize(data, 1) sc.parallelize(data, 2)

partition
partition

partition

Tasks

Spark work
• spark code is converted to jobs, which consist of stages, which consist of tasks
• tasks:

- run on a single CPU core
- operate on a single partition, which is loaded entirely to memory

Choosing partition count directly affects number of tasks
necessary to do a job.

Advantages of larger partitions
• less overhead in starting tasks

Disadvantages of larger partitions
• might not have enough to use all cores that are available
• harder to balance work evenly
• uses more memory

Repartitioning

RDD RDD RDD list of
tuples

data

("A", 1)
("B", 2)
("A", 3)
("B", 4)

T T T A
(parallelize) (filter) (map) (collect)

("A", 1)
("A", 3)

("A", 2)
("A", 6)

partition
partition

Many operations (like filter and map) output the same number of
partitions as they receive

- if the data is growing/shrinking a lot after a transformation, you might want
to change the partition count

- rdd.getNumPartitions() # check how many
- rdd2 = rdd.repartition(10) # change how many

Examples:
table.filter(onlyA).map(mult2).collect()
table.filter(onlyA).repartition(1).map(mult2).collect()

Transformations: Narrow vs. Wide

"Any transformation where a single output partition can be computed from
a single input partition is a narrow transformation." (Learning Spark book).

Others are wide transformations.

data = [("A", 1),("B", 2),("A", 3),("B", 4)]
table = sc.parallelize(data, 2)
filtered = table.filter(lambda row: row[0] == "A")
ordered = table.sortBy(lambda row: row[0])

("A", 1)
("B", 2)
("A", 3)
("B", 4)

("A", 1)
("A", 3)

("A", 1)
("B", 2)
("A", 3)
("B", 4)

("A", 1)
("A", 3)
("B", 2)
("B", 4)filtered

(narrow) ordered
(wide)

Wide transformations often require network resources. Unless all input
partitions are on the same machine, some will need to be transferred.

Caching

RDD RDD RDD average
tempT T A

(filter)

all weather
data

Wisconsin
weather

data

RDD Madison
rainfall

T
A

RDD correlation
between
stations

T

A
Some RDDs might be used repeatedly

• Spark might cache a copy of the computed results
• OR we can tell it to

all_weather = ...
wi_weather = all_weather.filter(...)
wi_weather.cache()
...
wi_weather.unpersist() # stop caching

actual bytes rememberd
after first time needed

Outline: MapReduce and Spark

Data Lakes

Hadoop MapReduce

Spark
• Resilient Distributed Datasets (RDDs)
• SQL and DataFrames
• Deployment

Spark SQL and DataFrames

Spark SQL
• builds on RDDs
• write standard queries (ANSI SQL:2003)
• automatic optimization possible because Spark knows what transformations are

doing

DataFrame API
• builds on Spark SQL (so also optimizable)
• DataFrames are immutable because RDDs are immutable
• DataFrames aren't materialized in memory. Contents are computed as needed

in parallel across many workers.

DataFrames: Pandas vs. Spark

pandas_df = pd.DataFrame({"x": [1,2,3]})

pandas DFs are mutable
pandas_df["y"] = pandas_df["x"] ** 2

spark_df = spark.createDataFrame(pandas_df)

could convert back:
spark_df2.toPandas()

cannot add column to immutable Spark DF
can only create a new DF
spark_df2 = spark_df.withColumn("y", col("x") ** 2)

Outline: MapReduce and Spark

Data Lakes

Hadoop MapReduce

Spark
• Resilient Distributed Datasets (RDDs)
• SQL and DataFrames
• Deployment

Deployment

Mode Spark driver Spark executor Cluster manager

Local Runs on a single JVM, like a
laptop or single node

Runs on the
same JVM as the
driver

Runs on the same host

Standalone Can run on any node in the
cluster

Each node in the
cluster will
launch its own

Can be allocated
arbitrarily to any host
in the cluster

YARN (client) Runs on a client, not part of
the cluster

YARN’s
NodeManager’s
container

YARN’s Resource
Manager works with
YARN’s Application

YARN (cluster) Runs with the YARN
Application Master

Same as YARN
client mode

Same as YARN client
mode

Kubernetes Runs in a Kubernetes pod
Each worker
runs within its
own pod

Kubernetes Master

Table 1-1 from Learning Spark book

Deployment

Mode Spark driver Spark executor Cluster manager

Local Runs on a single JVM, like a
laptop or single node

Runs on the
same JVM as the
driver

Runs on the same host

Standalone Can run on any node in the
cluster

Each node in the
cluster will
launch its own

Can be allocated
arbitrarily to any host
in the cluster

YARN (client) Runs on a client, not part of
the cluster

YARN’s
NodeManager’s
container

YARN’s Resource
Manager works with
YARN’s Application

YARN (cluster) Runs with the YARN
Application Master

Same as YARN
client mode

Same as YARN client
mode

Kubernetes Runs in a Kubernetes pod
Each worker
runs within its
own pod

Kubernetes Master

Table 1-1 from Learning Spark book

VM/containers

Jupyter
pyspark module
Spark driver
Spark session

cluster manager

JVM

JVM

JVM

Spark executor

JVM

Spark executor

JVM

Spark executor

Deployment

Mode Spark driver Spark executor Cluster manager

Local Runs on a single JVM, like a
laptop or single node

Runs on the
same JVM as the
driver

Runs on the same host

Standalone Can run on any node in the
cluster

Each node in the
cluster will
launch its own

Can be allocated
arbitrarily to any host
in the cluster

YARN (client) Runs on a client, not part of
the cluster

YARN’s
NodeManager’s
container

YARN’s Resource
Manager works with
YARN’s Application

YARN (cluster) Runs with the YARN
Application Master

Same as YARN
client mode

Same as YARN client
mode

Kubernetes Runs in a Kubernetes pod
Each worker
runs within its
own pod

Kubernetes Master

Table 1-1 from Learning Spark book

VM/containers

Jupyter
pyspark module
Spark driver
Spark session
Sprak executor

JVM

this mode is fine for testing/development, but
misses the benefits of distributed computing

