
[544] Cassandra
Partitioning+Replication

Tyler Caraza-Harter

Cassandra Influences

BigTable
(2006 paper)

HBase
(2008 release)

Cassandra
(2008 release)

Dynamo
(2007 paper)

DynamoDB
(2012 release)

data model,
storage layout

partitioning+replication

"customers should be able to view
and add items to their shopping

cart even if disks are failing, network
routes are flapping, or data centers
are being destroyed by tornados"

~ authors of first Dynamo paper
goal: highly available when things are failing

Outline: Cassandra Partitioning+Replication

Partitioning

Replication

Quorum Reads/Writes

Conflict Resolution

Cassandra Demos

Partitioning Approaches

Given many machines and a partition of data, how do we decide
where it should live?

Mapping Data Structure
• locations = {"fileA-block0": [datanode1, ...], ...}
• HDFS NameNode uses this

Hash Partitioning
• partition = hash(key) % partition_count
• Spark shuffle uses this (for grouping, joining, etc); data structures

associate partitions with worker machines

Consistent Hashing
• Dynamo and Cassandra use this

Review: HDFS Partitioning

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

My Laptop

client program

block
locations

Review: Spark Hash Partitioning

X Y
A 1
A 3
A 7
A 8

B 2
B 9

X Y

A 1
A 3

X TOTAL
A 19

C 4
D 5
D 6

B 2
C 4

D 5
D 6
A 7

A 8
B 9

B 11

m
ac

hi
ne

 1
m

ac
hi

ne
 2

C 4
D 11

partition

X TOTAL
A 19
B 11
C 4
D 11

action

file or
Pandas DF

3 partitions

row = Row(X=D, Y=5)
partition = hash(row.X) % 3 # partition=2

Discuss Scalability: HDFS and Spark

Scalability: we can make efficient use of many machines for big data

Two ways we can have big data:
• very many file blocks or rows
• files or tables containing many bytes of data

Will HDFS struggle with either kind of big data? Spark?

Elasticity: Easily Growing/Shrinking Clusters

Incremental Scalability: can we efficiently add more machines to an
already large cluster?

What happens when we add a new DataNode to an HDFS cluster?

What would need to happen if we able to add an RDD partition in
the middle of a Spark hash-partitioned shuffle?

Elasticity: Easily Growing/Shrinking Clusters

Incremental Scalability: can we efficiently add more machines to an
already large cluster?

What happens when we add a new DataNode to an HDFS cluster?

What would need to happen if we able to add an RDD partition in
the middle of a Spark hash-partitioned shuffle?

Demo: hash partition 26 letters over 4 "machines".
Add a 5th machine. How many letters must move?

Partitioning Approaches

Given many machines and a partition of data, how do we decide
where it should live?

Mapping Data Structure
• locations = {"fileA-block0": [datanode1, ...], ...}
• HDFS NameNode uses this

Hash Partitioning
• partition = hash(key) % partition_count
• Spark shuffle uses this (for grouping, joining, etc); data structures

associate partitions with worker machines

Consistent Hashing
• Dynamo and Cassandra uses this
• token = hash(key) # every token is in a range, indicating the worker
• locations = {range(0,10): "worker1", range(10,20): "worker2", ...}

Consistent Hashing

biggest
int64

smallest
int64

number line

Consistent Hashing

biggest
int64

smallest
int64

node1 node2 node3workers:

assign every worker a point on the number line.
Could be random (though newer approaches are more clever).

No hashing needed, yet!

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something

Consistent Hashing

biggest
int64

smallest
int64

node1 node2 node3workers:

assign every row a point on the number line.
token(row) = hash(row's partition key)

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something

A B C D Erows:

Consistent Hashing

node1 node2 node3workers:

each node's token is the inclusive end of a range.
A row is mapped to a node based on the range it is in.

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something

A B C D Erows:

node1 node2 node3

A B C D
cluster:

Consistent Hashing

node1 node2 node3workers:

tokens > biggest node token are in the wrapping range. Rows
in this region go to the node with the smallest token.

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something

A B C D Erows:

node1 node2 node3

A B C D
cluster:

E

Alternate Visualization

Given the wrapping, clusters using consistent hashing are called
"token rings"

Common visuazilation (e.g., from Wikipedia)

https://en.wikipedia.org/wiki/Consistent_hashing#/media/File:Consistent_Hashing_Sample_Illustration.png

Adding a Node

node1 node2 node3workers:

which rows will have to move?
which nodes will be involved?

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something
token(node4) = pick something

A B C D Erows:

node1 node2 node3

A B C D
cluster:

E

node4

new
node4

Adding a Node

node1 node2 node3workers:

which rows will have to move? Only C
which nodes will be involved? Only node3 and node4

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something
token(node4) = pick something

A B C D Erows:

node1 node2 node3

A B CD
cluster:

E

node4

node4

Adding a Node

node1 node2 node3workers:

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something
token(node4) = pick something

A B C D Erows:

node4

Typically, what fraction of the data must move when we scale from N-1 to N?
Hash partinioning: about (N-1)/N of the data
Consistent hashing: about (size of new range)/(size of combined range) of the
data must move.

Collisions Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something
token(node4) = pick something

Problem: latest Cassandra versions by default try to choose new node tokens
to split big ranges for better balance (instead of randomly picking). Adding
multiple nodes simultaneously can lead to collisions, preventing nodes from
joining.

Solution: add one at a time (after initial "seed" nodes)

node1 node2 node3workers:

A B C D Erows:

node4
node5

Sharing the Work

node1 node2 node3workers:

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something
token(node4) = pick something

A B C D Erows:

node4

Other problems with adding node 4
• long term: only load of node 3 is alleviated
• short term: node 3 bears all the burden of transferring data to node 4

Solution: "vnodes"

Virtual Nodes (vnodes) Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

node1 node2 node3workers:

A B C D Erows:

node3 node2node1

Each node is resonsible for multiple ranges
• how many is configurable
• node 4 will take some load off nodes 1 and 2

(those to the right of its vnodes)

node4node4

Token Map Storage Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

where should this live?

we don't want a single point of failure
(like an HDFS NameNode)

Token Map Storage
node1

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data...

node2

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data...

node3

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data... every node has a copy of the token map

they should all get updated when new nodes join

Adding Nodes: Bad Approach
node1

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node2

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node3

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data...

node4

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

rebooting...

uh oh, node 3 won't know about
node 4 when it comes back

Better Approach: Gossip
node1

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data...

node2

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node4

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node3

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data...

rebooting...

just inform one or a few nodes
about the new one

node1

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node2

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node4

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node3

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data...

rebooting...

once per second:
choose a random friend
gossip about new nodes

"have you heard
about node 4?"

Better Approach: Gossip

node1

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node2

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node4

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node3

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

eventually, every node should find outBetter Approach: Gossip

node1

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node2

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node4 (coordinator)

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node3

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

when a client wants to write a row,
they can contact any node -- it should
know where the data should live and

coordinate the operation

client

Better Approach: Gossip

TopHat, Worksheet

Outline: Cassandra Partitioning+Replication

Partitioning

Replication

Quorum Reads/Writes

Conflict Resolution

Cassandra Demos

Replication

create keyspace X
with replication={'class': 'SimpleStrategy',
 'replication_factor': 2};

create keyspace Y
with replication={'class': 'SimpleStrategy',
 'replication_factor': 3};

We replicate (create multiple copies on different nodes) to improve
durability -- meaning we don't want data to be lost when nodes die.

Cassandra lets us choose a different RF
(replication factor) for each keyspace:

Replication Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

node1 node2 node3workers: node3 node2node1

create keyspace X
with replication={'class': 'SimpleStrategy',
 'replication_factor': 2};

create keyspace Y
with replication={'class': 'SimpleStrategy',
 'replication_factor': 3};

node4node4

row in a table in X
nodes: 4, 2

walk until we get
enough nodes

Replication Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

node1 node2 node3workers: node3 node2node1

create keyspace X
with replication={'class': 'SimpleStrategy',
 'replication_factor': 2};

create keyspace Y
with replication={'class': 'SimpleStrategy',
 'replication_factor': 3};

node4node4

row in a table in Y
nodes: ????

Replication Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

node1 node2 node3workers: node3 node2node1

create keyspace X
with replication={'class': 'SimpleStrategy',
 'replication_factor': 2};

create keyspace Y
with replication={'class': 'SimpleStrategy',
 'replication_factor': 3};

node4node4

row in a table in Y
nodes: 3, 1, 2

Replication Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

node1 node2 node3workers: node3 node2node1

create keyspace X
with replication={'class': 'SimpleStrategy',
 'replication_factor': 2};

create keyspace Y
with replication={'class': 'SimpleStrategy',
 'replication_factor': 3};

node4node4

row in a table in Y
nodes: ????

Replication Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

node1 node2 node3workers: node3 node2node1 node4node4

row in a table in Y
nodes: 4, 3, 2

Important! Keeping multiple copies on vnodes on the same node
provides little safety (when a node dies, all its vnodes die). Same
"failure domain".

Cassandra can skip nodes as it "walks the ring".

Network Infrastructure

https://buy.hpe.com/us/en/servers/proliant-dl-servers/proliant-dl10-servers/proliant-dl20-server/hpe-proliant-dl20-gen10-plus-e-2336-2-9ghz-6-core-1p-16gb-u-4sff-500w-rps-server/p/p44115-b21?ef_id=Cj0KCQiAt66eBhCnARIsAKf3ZNFJsg49UV6Zm33R7lkRqi-XOd_JECmdyqNMAm2CKLSm_F-
z6JTYDTQaAgMTEALw_wcB:G:s&s_kwcid=AL!13472!3!331628972784!!!g!318267171339!!1707918369!67076417419&gclsrc=aw.ds&gclid=Cj0KCQiAt66eBhCnARIsAKf3ZNFJsg49UV6Zm33R7lkRqi-XOd_JECmdyqNMAm2CKLSm_F-z6JTYDTQaAgMTEALw_wcB

https://www.server-rack-online.com/gl910ent-4048sss.html?
utm_medium=shoppingengine&utm_source=googlebase&utm_source=google&utm_medium=cpc&adpos=&scid=scplpgl910ent-4048sss&sc_intid=gl910ent-4048sss&gclid=Cj0KCQiAt66eBhCnARIsAKf3ZNEMYlNPAA0RFGQIF0DsieCM6oh7i3kuJvJIpnmJAlOpAJ3RWT11QMAaAqRnEALw_wcB

https://www.dotmagazine.online/issues/digital-infrastructure-and-transforming-markets/data-center-models

Server

Data Center

Rack

Correlated Failures

https://buy.hpe.com/us/en/servers/proliant-dl-servers/proliant-dl10-servers/proliant-dl20-server/hpe-proliant-dl20-gen10-plus-e-2336-2-9ghz-6-core-1p-16gb-u-4sff-500w-rps-server/p/p44115-b21?ef_id=Cj0KCQiAt66eBhCnARIsAKf3ZNFJsg49UV6Zm33R7lkRqi-XOd_JECmdyqNMAm2CKLSm_F-
z6JTYDTQaAgMTEALw_wcB:G:s&s_kwcid=AL!13472!3!331628972784!!!g!318267171339!!1707918369!67076417419&gclsrc=aw.ds&gclid=Cj0KCQiAt66eBhCnARIsAKf3ZNFJsg49UV6Zm33R7lkRqi-XOd_JECmdyqNMAm2CKLSm_F-z6JTYDTQaAgMTEALw_wcB

https://www.server-rack-online.com/gl910ent-4048sss.html?
utm_medium=shoppingengine&utm_source=googlebase&utm_source=google&utm_medium=cpc&adpos=&scid=scplpgl910ent-4048sss&sc_intid=gl910ent-4048sss&gclid=Cj0KCQiAt66eBhCnARIsAKf3ZNEMYlNPAA0RFGQIF0DsieCM6oh7i3kuJvJIpnmJAlOpAJ3RWT11QMAaAqRnEALw_wcB

https://www.dotmagazine.online/issues/digital-infrastructure-and-transforming-markets/data-center-models

Server

Data Center

Rack

"customers should be able to view
and add items to their shopping

cart even if disks are failing, network
routes are flapping, or data centers
are being destroyed by tornados"

~ authors of first Dynamo paper

Whole-rack problems:
• top-of-rack switch fails
• rack's power supply fails

One server goes down, all of its
vnodes are gone.

Replication Policy

Cassandra replication strategies are "pluggable", with a couple
built-in options.

SimpleStrategy
• all nodes are considered equal
• skips vnodes on same machine
• ignores rack and data center placement
• used in CS 544

NetworkTopologyStrategy
• considers data centers and racks
• when walking the ring, some vnodes may be skipped to protect against

multiple kinds of correlated failure

Worksheet

Outline: Cassandra Partitioning+Replication

Partitioning

Replication

Quorum Reads/Writes

Conflict Resolution

Cassandra Demos

Write Acks: WhatsApp Example

https://faq.whatsapp.com/665923838265756

these are examples of "acks" (acknowledgements)

In distributed storage systems/databases, an ack means our data is committed.

"Committed" means our data is "safe", even if bad things happen. The definition
varies system to system, based on what bad things are considered. For example:

• a node could hang until rebooted; a node's disk could permanently fail
• a rack could lose power; a data center could be destroyed

Obviously, no data is ever completely safe against any circumstance (e.g., comet
strikes earth, leading to destruction of humankind and all our data centers).

Write Acks: WhatsApp Example

https://faq.whatsapp.com/665923838265756

these are examples of "acks" (acknowledgements)

In distributed storage systems/databases, an ack means our data is committed.

"Committed" means our data is "safe", even if bad things happen. The definition
varies system to system, based on what bad things are considered. For example:

• a node could hang until rebooted; a node's disk could permanently fail
• a rack could lose power; a data center could be destroyed

Obviously, no data is ever completely safe against any circumstance (e.g., comet
strikes earth, leading to destruction of humankind and all our data centers).

stronger definition: all devices
(in case one device fails)

Write Acks: WhatsApp Example

https://faq.whatsapp.com/665923838265756

these are examples of "acks" (acknowledgements)

two checks (in WhatsApp) mean the message reached the destination.

Does only one check mean the message has NOT reached the destination?

Write Acks: WhatsApp Example

https://faq.whatsapp.com/665923838265756

these are examples of "acks" (acknowledgements)

two checks (in WhatsApp) mean the message reached the destination.

Does only one check mean the message has NOT reached the destination?

message message

ack

scenario 1 scenario 2

Cassandra Writes

node1 node2 node3

coordinatorclient

5 A 3 X 5 A 3 X 5 A 3 X

5 B

Say RF=3. Coordinator will attempt to write data to all 3 replicas.

Cassandra Writes

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

5 B

Say RF=3. Coordinator will attempt to write data to all 3 replicas.

rebooting...

At what point should we send an ack to the client?

ack ack

Cassandra Writes

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

5 B

Say RF=3. Coordinator will attempt to write data to all 3 replicas.

rebooting...

At what point should we send an ack to the client?
Configurable. W=2 lets coordinator ack now, and data is fairly safe.

ack ack

ack

Cassandra Reads

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

HDFS reads go to one replica. What if Cassandra tries that?

read

????

Cassandra Reads

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

HDFS reads go to one replica. What if Cassandra tries that?

old
data

Cassandra Reads

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

Read from R replicas (configurable). Here R=2.
Hopefully at least one of the replicas has new data.

Cassandra Reads

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

data data

R=2 means we'll often read identical data from two replicas (wasteful!)

Cassandra Reads

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

R=2 means we'll often read identical data from two replicas (wasteful!)

Improvement: read one copy, and only request checksum from others.

A checksum (like md5) is a hash function where collisions are extremely rare and hard to find.

checksum(data) data

When R+W > RF

node1 node2 node3

5 B 3 X 5 B 3 X 5 A 3 X

When R+W > RF, the replicas read+written will overlap.

There are some caveats (related to ring membership and
something called "hinted handoff") not covered in 544.

RF=3

W=2

R=2

Tuning R and W

Say RF=3

W=3, R=1
• reads are highly available and fast -- only need one replica to respond before

we can get back to the client!
• writes will not succeed (from the clients perspective) if even one node is

down. But the data may still get recorded on some nodes.

W=1, R=3
• writes are highly available and fast -- only need one replica to respond before

we can get back to the client!
• reads will not return data when even one node is down.
• risky: if the one node that took the write fails permanently, we'll lose

committed data

W=2, R=2
• relatively balanced approach

W=1, R=1
• speed+availability more important that correct data

Worksheet

Outline: Cassandra Partitioning+Replication

Partitioning

Replication

Quorum Reads/Writes

Conflict Resolution

Cassandra Demos

Getting Conflicting Versions

node1 node2 node3

coordinatorclient

5 A 3 X 5 A 3 X 5 A 3 X

5 B

Let RF=3, R=2, W=2

Getting Conflicting Versions

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

5 B

rebooting...

Let RF=3, R=2, W=2

Getting Conflicting Versions

node1 node2 node3

coordinatorclient

5 B 3 X 5 B 3 X 5 A 3 X

Let RF=3, R=2, W=2

Getting Conflicting Versions

node1 node2 node3

5 B 3 Y 5 B 3 X 5 A 3 Y

coordinatorclient

5 Y

rebooting...

Let RF=3, R=2, W=2

Getting Conflicting Versions

node1 node2 node3

5 B 3 Y 5 B 3 X 5 A 3 Y

coordinatorclient

Let RF=3, R=2, W=2

Getting Conflicting Versions

node1 node2 node3

5 B 3 Y 5 B 3 X 5 A 3 Y

coordinatorclient

Which version of row 5 should be sent back?
Both contain some new data not contained by other.

Systems that allow conflicting versions to co-exist,
fixing it up later are "eventually consistent"

coordinatorclient

datadata

rebooting...

Getting Conflicting Versions

node1 node2 node3

5 B 3 Y 5 B 3 X 5 A 3 Y

coordinatorclient

Approaches:
• send all version back to the client, which will need specialized conflict resolution code
• automatically combine them into a new row, and write that (if possible to all replicas)

Dynamo supports both. Cassandra uses second approach.

coordinatorclient

datadata

rebooting...

Timestamps

node1 node2 node3

5 B 3 Y 5 B 3 X 5 A 3 Y

coordinator

Every cell of every table has a timestamp:
• approximate (since clocks of nodes in a cluster are never perfectly in sync)
• policy is LWW (last writer wins), meaning prefer newer data
• Cassandra lets you query the timestamp of each cell

coordinator

datadata

rebooting... 95 23
3 95 95 95 95 95 55
2

5 B 3 Y

95 23
3 95 55
2

Outline: Cassandra Partitioning+Replication

Partitioning

Replication

Quorum Reads/Writes

Conflict Resolution

Cassandra Demos

