
[544] Cassandra Storage Engine
Tyler Caraza-Harter

Binary Search Trees, B-trees

https://en.wikipedia.org/wiki/Binary_search_tree

https://en.wikipedia.org/wiki/B-tree

Binary Search Tree B-Tree

MySQL example:
CREATE INDEX loan_amount_idx
USING BTREE ON loans(loan_amount)

B-Trees:
• most popular DB index data structure
• fast reads, slower for writes
• more in CS 564

Log Structured Merge Trees (LSMs)

Performance:
• faster writes (ALWAYS sequential)
• writes create background work to complete later
• slower reads (for single value, at least)

Single-node DBs and K/V stores:
• LevelDB
• RocksDB
• SQLite4

Distributed DBs:
• BigTable
• HBase
• Cassandra

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging
• in general
• Cassandra

Storing Data: SSTables

Reading Data

Compacting Data

Buffering Writes

A B C D A A B Bstorage
blocks:

0 1 2 3 4 5 6 7

writes: block[1] = X, block[4] = B

waiting for the write would be slow:
storage is slow in general

(these writes would be random)

A B C D A A B B

0 1 2 3 4 5 6 7

writes: block[1] = X, block[4] = B

return from write now, buffer work for later...

X

(1)

B

(4)

buffer
in RAM:

storage
blocks:

Buffering Writes

A B C D A A B B

0 1 2 3 4 5 6 7

writes: block[1] = X, block[4] = B, block[2] = Y, block[3] = Z

if we're lucky, we'll get more writes that we can do efficiently together

X

(1)

B

(4)

Y

(2)

Z

(3)

buffer
in RAM:

storage
blocks:

Buffering Writes

A X Y Z B A B B

0 1 2 3 4 5 6 7

writes:

sync to disk eventually

buffer
in RAM:

storage
blocks:

Buffering Writes

A X Y Z B A B B

0 1 2 3 4 5 6 7

what will happen to the last written data?

buffer
in RAM:

Crashing at a Bad Time

writes: block[0] = W

W

(0)

storage
blocks:

A X Y Z B W

(0)

D

(3)

0 1 2 3 4 5 6 7

sequentially write it to the log now; write to the correct place later

D

(3)

buffer
in RAM:

Solution: Logging Writes

writes: block[0] = W, block[3]=D

W

(0)

storage
blocks:

log storage

our data is committed once it has been logged

A X Y Z B W

(0)

D

(3)

0 1 2 3 4 5 6 7

normally a log is never read, just after restarting from a crash

buffer
in RAM:

Crash Recovery

storage
blocks:

log storage

Durability in a Distributed System

m
ac

hi
ne

 1
disk RAM

Durability means your data isn't lost when certain bad things happen.
Stronger durability means tolerance for more kinds of faults.

m
ac

hi
ne

 2

disk RAM
m

ac
hi

ne
 1

disk RAM

m
ac

hi
ne

 2

disk RAM

m
ac

hi
ne

 1

disk RAM

m
ac

hi
ne

 2

disk RAM

m
ac

hi
ne

 1

disk RAM
m

ac
hi

ne
 2

disk RAM

data

data data

data

data data

weaker

stronger

what is the least-bad thing that could cause permanent data loss in each scenario?

Writing Data: Buffering and Logging
• in general
• Cassandra

Storing Data: SSTables

Reading Data

Compacting Data

Outline: Cassandra Storage Engine

LSM Buffers: Memtables

Cassandra Worker

RAM

long term table storage

memtable

(table A)

memtable

(table B)

each Cassandra table will have its own in-memory memtable

update cell of row in table A

local FS

Cassandra Worker

RAM

long term table storage

memtable

(table A)

memtable

(table B)

occasionally there are multiple memtables for the same table
(one can be flushed to disk while another receives new writes)

update cell of row in table A

memtable

(table A)

local FS

LSM Buffers: Memtables

data files

Memtables, Memory Layout

Cassandra worker:
virtual address space

m
em

ta
bl

es

JVM memory

st
ac

k

he
ap

https://www.datastax.com/blog/heap-memtables-cassandra-21

remember, JVM memory management is notoriously
inneficient and prone to garbage collection pauses

Memtables, Memory Layout

Cassandra worker:
virtual address space

JVM memory

st
ac

k

he
ap

remember, JVM memory management is notoriously
inneficient and prone to garbage collection pauses

https://www.datastax.com/blog/heap-memtables-cassandra-21

m
em

ta
bl

es

latest Cassandra versions can store most memtable data off heap

Commit Log
Cassandra Worker

local FS

RAM
memtable

(table A)

memtable

(table B)

a single log per worker is shared between all tables and written sequentially

commit log:

update cell of row in table B

CREATE KEYSPACE ???? WITH REPLICATION={...} AND DURABLE_WRITES=true

keyspaces can be tuned for either performance (log soon) or durability (log before ack)

data files

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data

Outline: Cassandra Storage Engine

Data.db
Index.db ...other files...
Filter.db

SSTables (Sorted String Tables)

Cassandra Worker

RAM

long term table storage

memtable

(table A)

memtable

(table B)

memtable

(table A)

local FS

it is sorted because Data.db contains key/value pairs sorted by key
(which actually is not required to be a string)

Data.db

key value

A (1,4)

C (9,3)

D (2,8)

G (5,4)

M tombstone

Q (2,4)

this key will encode primary keys (partition+cluster keys)

row data stored here

indicates deletionsorting makes
"range queries" (lookups

of consecutive keys)
efficient/sequential

Data.db
Index.db ...other files...
Filter.db

SSTables (Sorted String Tables)

Cassandra Worker

RAM

long term table storage

memtable

(table A)

memtable

(table B)

memtable

(table A)

local FS

problem: even though Data.db is sorted, we wouldn't want to do binary
search on it to find an entry, because the disk I/O would be random

Index.db
key value

... ...

rows in this SSTable belonging to
the same partition

key position
... ...

the index is generally loaded
to memory so lookups in the

sorted data is fast

might not have enough RAM to keep all keys in
memory, so just points in to the general area

Data.db
Index.db ...other files...
Filter.db

SSTables (Sorted String Tables)

Cassandra Worker

RAM

long term table storage

memtable

(table A)

memtable

(table B)

memtable

(table A)

local FS

can infer a key must be in the data without actually looking?

Filter.db contains a bloom filter, a very space efficient structure for
helping with this. Like Index.db, it is generally loaded to memory.

Filter.db: bloom filter construction

0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

Step 1: compute multiple different hash functions for every key (mod N)

N=10 bits of
bloom filter

key hash1(key)%N hash2(key)%N

A 2 8

B 4 8

...

Filter.db: bloom filter construction

key hash1(key)%N hash2(key)%N

A 2 8

B 4 8

...

0 0 1 0 1 0 0 0 1 0

0 1 2 3 4 5 6 7 8 9

Step 1: compute two different hash functions for every key (mod N)

N=10 bits of
bloom filter

Step 2: flip zeros to ones at each position corresponding to a hashvalue%N

Filter.db: bloom filter lookup: no case

1 0 1 0 1 0 1 0 1 0

0 1 2 3 4 5 6 7 8 9

Was C inserted in the bloom filter?

Assume hash1(C) % N = 2
AND hash2(C) % N = 5

Filter.db: bloom filter lookup: no case

1 0 1 0 1 0 1 0 1 0

0 1 2 3 4 5 6 7 8 9

Was C inserted in the bloom filter?

Assume hash1(C) % N = 2
AND hash2(C) % N = 5

It definitely was NOT inserted. Otherwise we would have flipped position 5 to a one.

Filter.db: bloom filter lookup: maybe case

1 0 1 0 1 0 1 0 1 0

0 1 2 3 4 5 6 7 8 9

Was D inserted in the bloom filter?

Assume hash1(D) % N = 4
AND hash2(D) % N = 8

Filter.db: bloom filter lookup: maybe case

1 0 1 0 1 0 1 0 1 0

0 1 2 3 4 5 6 7 8 9

Was D inserted in the bloom filter?

Assume hash1(D) % N = 4
AND hash2(D) % N = 8

Maybe it was, as both spots are 1's. Or it could be a false positive
(remember that A and B together flipped these positions).

Bloom filters https://en.wikipedia.org/wiki/Bloom_filter

if it were a Python

data structure:

my_set = {...} # can add and remove

my_bloom = ... # can only add

x in my_set # True or False

x in my_bloom # Maybe or False (NEVER True)

False positive rate depends on
• number of inserts
• number of bits
• number of hash functions

It can be tuned to achieve any
desirable rate (but a lower rate
means more memory).

https://en.wikipedia.org/wiki/Bloom_filter

TopHat

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data

Outline: Cassandra Storage Engine

Example: lookup value for K

SSTable Data FilterIndex

SSTable Data FilterIndex

SSTable Data FilterIndex

SSTable Data FilterIndex

SSTable Data FilterIndex

Example: lookup value for K

SSTable Data FilterIndex

SSTable Data FilterIndex

SSTable Data FilterIndex

SSTable Data FilterIndex

is K in Data?

maybe

maybe

no

no

SSTable Data FilterIndex maybe

Example: lookup value for K

SSTable Data FilterIndex

SSTable Data FilterIndex

SSTable Data FilterIndex

SSTable Data FilterIndex

where should we look for K?

maybe

maybe

no

no

SSTable Data FilterIndex maybe

Example: lookup value for K

SSTable Data FilterIndex

SSTable Data FilterIndex

SSTable Data FilterIndex

SSTable Data FilterIndex

lookup[K] = v2

maybe

maybe

no

no

SSTable Data FilterIndex maybe

v1v2nothing

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data
• merge sort
• performance considerations
• HBase vs. Cassadra

Outline: Cassandra Storage Engine

Only dumping out large, immutable SSTables is good for writes
(everything is sequential).

Over time, read cost grows with number of SSTables.

Bloom filters help, but have limitations:
• false positives
• same key might be any many SSTables
• sometimes want to read values between K1 and K2 (a "range

query") instead of for a single K value (a "point lookup")

We can reduce the number SSTables by "merge sorting" multiple
small ones into one bigger one. This is called "compaction".

Controlling Read Cost

Compaction: Merge Sorting SSTables

SSTableData FilterIndex

SSTableData FilterIndex

SSTableData FilterIndex

merge
sort

re-compute

this example has two input SSTables, but it could be more

Compaction

key value

A (1,4)

G (8,9)

M tombstone

key value
C (9,3)

D (2,8)

G (5,4)

M (3,4)

Q (2,4)

key value
newer

older

compacted

Compaction

key value

A (1,4)

G (8,9)

M tombstone

key value
C (9,3)

D (2,8)

G (5,4)

M (3,4)

Q (2,4)

key value

A (1,4)

newer

older

compacted

Compaction

key value

A (1,4)

G (8,9)

M tombstone

key value
C (9,3)

D (2,8)

G (5,4)

M (3,4)

Q (2,4)

key value

A (1,4)

C (9,3)

D (2,8)

newer

older

compacted

if both have same value, use newer

Compaction

key value

A (1,4)

G (8,9)

M tombstone

key value
C (9,3)

D (2,8)

G (5,4)

M (3,4)

Q (2,4)

key value

A (1,4)

C (9,3)

D (2,8)

G (8,9)

newer

older

compacted

do we write a new tombstone, or delete the entry?

the key might appear in even
older SSTables: write tombstone

the key cannot appear in
older SSTables: delete it

Compaction

key value

A (1,4)

G (8,9)

M tombstone

key value
C (9,3)

D (2,8)

G (5,4)

M (3,4)

Q (2,4)

key value

A (1,4)

C (9,3)

D (2,8)

G (8,9)

M tombstone

newer

older

compacted

once we get to the end of one input,
we just work from the others

Compaction

key value

A (1,4)

G (8,9)

M tombstone

key value
C (9,3)

D (2,8)

G (5,4)

M (3,4)

Q (2,4)

key value

A (1,4)

C (9,3)

D (2,8)

G (8,9)

M tombstone

Q (2,4)

newer

older

compacted

delete old SSTables

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data
• merge sort
• performance considerations
• HBase vs. Cassadra

Outline: Cassandra Storage Engine

Write Overheads

Compactions make reads faster, but create write overheads.

Most written data gets re-written many times after the initial write
(this is called "write amplification").

For example, in Facebook messages on HBase: "Compaction causes
about 17x more writes than flushing does, indicating that a typical
piece of data is relocated 17 times." 
~ Analysis of HDFS Under HBase: A Facebook Messages Case Study, Harter et al.

Background vs. Foreground Work

Compaction is background work, making LSM-based storage
systems ideal for "bursty" workloads:

time

online
users

burst

accumulate SSTables catch up on compaction

Compaction Policies

SizeTieredCompactionStrategy
• optimized for write-heavy workloads
• try to compact SSTables of similar size together
• merge sorting very small files with very large is inneficient
• DEFAULT

LeveledCompactionStrategy
• optimized for read-heavy workloads
• SSTables are assigned levels
• A key can appear in at most SSTable per level (except level 0)

There are other strategies not covered in 544...

Compaction Policies

tier
smaller

key range

larger

levels

L0

L1

L2

L3

key range

size-tiered SSTables leveled SSTables

Say you want to read key C, but an SSTable's first key is E and last is Y.
You can safely ignore that SSTable.

Reading a Key

tier
smaller

key range

larger

levels

L0

L1

L2

L3

key range

size-tiered SSTables leveled SSTables

leveled approach can avoid most SSTables during read

WINNER

Compacting SSTables

tier
smaller

key range

larger

levels

L0

L1

L2

L3

key range

size-tiered SSTables leveled SSTables

size-tiered can compact similarly sized SSTables together
(more efficient than compacting very small files with very large files)

WINNER

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data
• merge sort
• performance considerations
• HBase vs. Cassadra

Outline: Cassandra Storage Engine

HBase vs. Cassandra

LSM

Replication

Replication

LSM

HBase Cassandra

Which uses more resources for compaction?

DataNode DataNode

RegionServer

HDFS

DataNode

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

T1 T2

T3

T1 T2

T3

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Cassandra Worker

T1 T2

T3

H
Ba

se
C

as
sa

nd
ra

note: this shows all 3 Cassandra LSMs in the
same state, but they don't need to be in sync.

RegionServer may or may not share a
machine with one of the DataNodes

Which uses more resources for compaction?

DataNode DataNode

RegionServer

HDFS

DataNode

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

T1 T2

T3

T1 T2

T3

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Cassandra Worker

T1 T2

T3

H
Ba

se
C

as
sa

nd
ra

compute: HBase merges 1x, Cassandra merges 3x. Winner: HBase

RegionServer may or may not share a
machine with one of the DataNodes

Which uses more resources for compaction?

DataNode DataNode

RegionServer

HDFS

DataNode

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

T1 T2

T3

T1 T2

T3

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Cassandra Worker

T1 T2

T3

H
Ba

se
C

as
sa

nd
ra

disk reads: HBase uses ???? MB, Cassandra uses ???? MB. Winner: ????

RegionServer may or may not share a
machine with one of the DataNodes

Which uses more resources for compaction?

DataNode DataNode

RegionServer

HDFS

DataNode

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

T1 T2

T3

T1 T2

T3

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Cassandra Worker

T1 T2

T3

H
Ba

se
C

as
sa

nd
ra

disk reads: HBase uses 2 MB, Cassandra uses 6 MB. Winner: HBase

RegionServer may or may not share a
machine with one of the DataNodes

Which uses more resources for compaction?

DataNode DataNode

RegionServer

HDFS

DataNode

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

T1 T2

T3

T1 T2

T3

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Cassandra Worker

T1 T2

T3

H
Ba

se
C

as
sa

nd
ra

disk writes: HBase uses ???? MB, Cassandra uses ???? MB. Winner: ????

RegionServer may or may not share a
machine with one of the DataNodes

Which uses more resources for compaction?

DataNode DataNode

RegionServer

HDFS

DataNode

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

T1 T2

T3

T1 T2

T3

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Cassandra Worker

T1 T2

T3

H
Ba

se
C

as
sa

nd
ra

disk writes: HBase uses 6 MB, Cassandra uses 6 MB. Winner: Tie

RegionServer may or may not share a
machine with one of the DataNodes

Which uses more resources for compaction?

DataNode DataNode

RegionServer

HDFS

DataNode

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

T1 T2

T3

T1 T2

T3

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Cassandra Worker

T1 T2

T3

H
Ba

se
C

as
sa

nd
ra

network I/O: HBase uses ???? MB, Cassandra uses ???? MB. Winner: ????

RegionServer may or may not share a
machine with one of the DataNodes

Which uses more resources for compaction?

DataNode DataNode

RegionServer

HDFS

DataNode

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

T1 T2

T3

T1 T2

T3

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Local File-
Systems

(on HDDs)

Cassandra Worker

T1 T2

T3

Cassandra Worker

T1 T2

T3

H
Ba

se
C

as
sa

nd
ra

network I/O: HBase uses 4-8 MB, Cassandra uses 0 MB. Winner: Cassandra

RegionServer may or may not share a
machine with one of the DataNodes

Architecture: HBase vs. Cassandra

LSM

Replication

Replication

LSM

HBase Cassandra

• disk read efficient
• compute efficient

• network efficient
• flexible (different nodes

can compact differently)

