[544] Cassandra Storage Engine

Tyler Caraza-Harter

Binary Search Trees, B-trees

Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_tree

7 16 7 16 1 2 5 6 9 12 18 21

B-Tree

https://en.wikipedia.org/wiki/B-tree

MySQL example: CREATE INDEX Ioan_amount_idx USING BTREE ON Ioans(Ioan_amount)

B-Trees:

- most popular DB index data structure
- fast reads, slower for writes
- more in CS 564

Log Structured Merge Trees (LSMs)

Performance:

- faster writes (ALWAYS sequential)
- writes create background work to complete later
- slower reads (for single value, at least)

Single-node DBs and K/V stores:

- LevelDB
- RocksDB
- SQLite4

Distributed DBs:

- BigTable
- HBase
- Cassandra

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

- in general
- Cassandra

Storing Data: SSTables

Reading Data

Compacting Data

writes: block[1] = X, block[4] = B

waiting for the write would be slow: storage is slow in general (these writes would be random)

writes: block[I] = X, block[4] = B

return from write now, buffer work for later...

writes: block[1] = X, block[4] = B, block[2] = Y, block[3] = Z

if we're lucky, we'll get more writes that we can do efficiently together

sync to disk eventually

Crashing at a Bad Time

what will happen to the last written data?

Solution: Logging Writes

writes: block[0] = W, block[3]=D

sequentially write it to the log now; write to the correct place later

our data is committed once it has been logged

Crash Recovery

normally a log is never read, just after restarting from a crash

Durability in a Distributed System

Durability means your data isn't lost when certain bad things happen. Stronger durability means tolerance for more kinds of faults.

what is the least-bad thing that could cause permanent data loss in each scenario?

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

- in general
- Cassandra

Storing Data: SSTables

Reading Data

Compacting Data

each Cassandra table will have its own in-memory memtable

LSM Buffers: Memtables

occasionally there are multiple memtables for the same table (one can be flushed to disk while another receives new writes)

Memtables, Memory Layout

remember, JVM memory management is notoriously inneficient and prone to garbage collection pauses

https://www.datastax.com/blog/heap-memtables-cassandra-21

Memtables, Memory Layout

Cassandra worker: virtual address space

remember, JVM memory management is notoriously inneficient and prone to garbage collection pauses

latest Cassandra versions can store most memtable data off heap

https://www.datastax.com/blog/heap-memtables-cassandra-21

a single log per worker is shared between all tables and written sequentially

keyspaces can be tuned for either performance (log soon) or durability (log before ack) —

CREATE KEYSPACE ???? WITH REPLICATION={...} AND DURABLE_WRITES=true

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data

SSTables (Sorted String Tables)

Cassandra Worker

it is sorted because Data.db contains key/value pairs sorted by key (which actually is not required to be a string)

Data.db

SSTables (Sorted String Tables)

Cassandra Worker

problem: even though Data.db is sorted, we wouldn't want to do binary search on it to find an entry, because the disk I/O would be random

Index.db

might not have enough RAM to keep all keys in memory, so just points in to the general area rows in this SSTable belonging to the same partition

SSTables (Sorted String Tables)

Cassandra Worker

can infer a key must be in the data without actually looking?

Filter.db contains a bloom filter, a very space efficient structure for helping with this. Like Index.db, it is generally loaded to memory.

Filter.db: bloom filter construction

Step I: compute multiple different hash functions for every key (mod N)

key	hash1(key)%N	hash2(key)%N
А	2	8
В	4	8
•••		

Filter.db: bloom filter construction

Step I: compute two different hash functions for every key (mod N)

Step 2: flip zeros to ones at each position corresponding to a hashvalue%N

Filter.db: bloom filter lookup: no case

Was C inserted in the bloom filter?

Assume hash I(C) % N = 2 AND hash2(C) % N = 5

Filter.db: bloom filter lookup: no case

Was C inserted in the bloom filter?

Assume hash I (C) % N = 2 AND hash2(C) % N = 5

It definitely was NOT inserted. Otherwise we would have flipped position 5 to a one.

Filter.db: bloom filter lookup: maybe case

Was D inserted in the bloom filter?

Assume hash I(D) % N = 4 AND hash2(D) % N = 8

Filter.db: bloom filter lookup: maybe case

Was D inserted in the bloom filter?

Assume hash I(D) % N = 4 AND hash2(D) % N = 8

Maybe it was, as both spots are I's. Or it could be a false positive (remember that A and B together flipped these positions).

Bloom filters

False positive rate depends on

- number of inserts
- number of bits
- number of hash functions

It can be tuned to achieve any desirable rate (but a lower rate means more memory).

if it were a Python
data structure:
my_set = {...} # can add and remove
my_bloom = ... # can only add

x in my_set # True or False
x in my_bloom # Maybe or False (NEVER True)

https://en.wikipedia.org/wiki/Bloom_filter

The false positive probability p as a function of number of elements n in the filter and the filter size m. An optimal number of hash functions $k = (m/n) \ln 2$ has been assumed.

TopHat

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data

Example: lookup value for K

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data

- merge sort
- performance considerations
- HBase vs. Cassadra

Controlling Read Cost

Only dumping out large, immutable SSTables is good for writes (everything is sequential).

Over time, read cost grows with number of SSTables.

Bloom filters help, but have limitations:

- false positives
- same key might be any many SSTables
- sometimes want to read values between K1 and K2 (a "range query") instead of for a single K value (a "point lookup")

We can reduce the number SSTables by "merge sorting" multiple small ones into one bigger one. This is called "compaction".

Compaction: Merge Sorting SSTables

this example has two input SSTables, but it could be more

newer

key	value
А	(1,4)
 G	(8,9)
 Μ	tombstone

older

key	value
С	(9,3)
D	(2,8)
G	(5,4)
М	(3,4)
Q	(2,4)

compacted

key	value

newer

 key	value
A	(1,4)
G	(8,9)
Μ	tombstone

older

key	value
С	(9,3)
D	(2,8)
G	(5,4)
М	(3,4)
Q	(2,4)

compacted

key	value
А	(1,4)

newer

 key	value
А	(1,4)
G	(8,9)
Μ	tombstone

older

_	key	value
	С	(9,3)
	D	(2,8)
	G	(5,4)
	Μ	(3,4)
	Q	(2,4)

compacted

key	value
Α	(1,4)
С	(9,3)
D	(2,8)

if both have same value, use newer

newer

÷

kev	value	key	value
Α	(1.4)	Α	(1,4)
G	(8,9)	С	(9,3)
M	tombstone	D	(2,8)
		G	(8,9)
0	lder		
key	value		

key	value
С	(9,3)
D	(2,8)
G	(5,4)
M	(3,4)
Q	(2,4)

do we write a new tombstone, or delete the entry?

the key might appear in even older SSTables: write tombstone

the key cannot appear in older SSTables: delete it

newer

compacted

ne			_
key	value	key	value
A	(1,4)	A	(1,4)
G	(8,9)	C	(9,3)
M	tombstone	D	(2,8)
	•	G	(8,9)
o	der	M	tombstone
key	value		
С	(9,3)	once we get to the end of one input we just work from the others	
D	(2,8)		
G	(5,4)		
Μ	(3,4)		
Q	(2,4)		

compacted

key	value
Α	(1,4)
С	(9,3)
D	(2,8)
G	(8,9)
М	tombstone
Q	(2,4)

delete old SSTables

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data

- merge sort
- performance considerations
- HBase vs. Cassadra

Write Overheads

Compactions make reads faster, but create write overheads.

Most written data gets re-written many times after the initial write (this is called "write amplification").

For example, in Facebook messages on HBase: "Compaction causes about 17x more writes than flushing does, indicating that a typical piece of data is relocated 17 times." ~ Analysis of HDFS Under HBase: A Facebook Messages Case Study, Harter et al.

Background vs. Foreground Work

Compaction is background work, making LSM-based storage systems ideal for "bursty" workloads:

Compaction Policies

SizeTieredCompactionStrategy

- optimized for write-heavy workloads
- try to compact SSTables of similar size together
- merge sorting very small files with very large is inneficient
- DEFAULT

LeveledCompactionStrategy

- optimized for read-heavy workloads
- SSTables are assigned levels
- A key can appear in at most SSTable per level (except level 0)

There are other strategies not covered in 544...

Compaction Policies

Say you want to read key C, but an SSTable's first key is E and last is Y. You can safely ignore that SSTable.

Reading a Key

leveled approach can avoid most SSTables during read

Compacting SSTables

WINNER

size-tiered can compact similarly sized SSTables together (more efficient than compacting very small files with very large files)

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data

- merge sort
- performance considerations
- HBase vs. Cassadra

HBase vs. Cassandra

Scenario: compact TI and T2 (both I MB) to produce T3 (2 MB)

note: this shows all 3 Cassandra LSMs in the same state, but they don't need to be in sync.

Scenario: compact TI and T2 (both I MB) to produce T3 (2 MB)

compute: HBase merges Ix, Cassandra merges 3x. Winner: HBase

HBase

Scenario: compact TI and T2 (both I MB) to produce T3 (2 MB)

disk reads: HBase uses ???? MB, Cassandra uses ???? MB. Winner: ????

Scenario: compact TI and T2 (both I MB) to produce T3 (2 MB)

disk reads: HBase uses 2 MB, Cassandra uses 6 MB. Winner: HBase

Scenario: compact TI and T2 (both I MB) to produce T3 (2 MB)

disk writes: HBase uses ???? MB, Cassandra uses ???? MB. Winner: ????

Scenario: compact TI and T2 (both I MB) to produce T3 (2 MB)

disk writes: HBase uses 6 MB, Cassandra uses 6 MB. Winner: Tie

Scenario: compact TI and T2 (both I MB) to produce T3 (2 MB)

network I/O: HBase uses ???? MB, Cassandra uses ???? MB. Winner: ????

Scenario: compact TI and T2 (both I MB) to produce T3 (2 MB)

network I/O: HBase uses 4-8 MB, Cassandra uses 0 MB. Winner: Cassandra

Architecture: HBase vs. Cassandra

HBase

LSM

Replication

- disk read efficient
- compute efficient

Cassandra

Replication

LSM

- network efficient
- flexible (different nodes can compact differently)