
[544] Kafka Reliability
Tyler Caraza-Harter



Outline: Kafka Reliability

Kafka Replication

Fault Tolerance

Exactly-Once Semantics



Three brokers, 2 partitions, replication factor=1
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Three brokers, 2 partitions, replication factor=3
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Three brokers, 2 partitions, replication factor=3
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Fetch Requests
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• each partition has one 
leader and RF-1 
follower replicas

• producers only send 
to leaders

• followers constantly 
fetch from leaders, 
just like consumers do
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Followers: In-Sync vs. Lagging Too Far Behind
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Minimum In-Sync Replicas (Assume 2 Here)
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Backoff: Not Enough Replicas Exception
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until we can catch up

• bigger min: stronger 
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What if the leader fails?  Elect a new one!
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• need to "elect" new 
leader (not democratic)

• special "controller" 
broker (chosen with help 
of Zookeeper) elects an 
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• note: Kafka is getting new 
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Kafka Replica Failover
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• failover takes some time
• Note: Cassandra tries to 

be highly available, so it 
doesn't differentiate 
leader from follower 
replicas to avoid 
downtime



Some Messages Seen by Old Leader Lost
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Review "Committed": WhatsApp Acks Example

https://faq.whatsapp.com/665923838265756

these are examples of "acks" (acknowledgements)

In distributed storage systems/databases, an ack means our data is committed.

"Committed" means our data is "safe", even if bad things happen.  The definition 
varies system to system, based on what bad things are considered.  For example:

• a node could hang until rebooted; a node's disk could permanently fail
• a rack could lose power; a data center could be destroyed

In Kafka's leader/follower replica design, what are some "bad things" we might worry 
about?



Kafka: Committed Messages

Messages are "commited" when written to ALL in-sync replicas.

Depending on how many are in-sync, the strength of the guarantee can vary, but 
min.insync.replicas lets us specify a worst case.

If number of concurrent broker failures < min.insync.replicas, then our committed 
data is safe, even if the leader fails (because we can elect another in-sync replica, 
and all in-sync replicas have all committed data).



Committed Messages
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• assume RF=3 and 

minimum in-sync=2
• is message 8 commited?
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TopHat



Working with Committed Data

How can we avoid "anomalies" (unexpected system behavior) by 
taking advantage of commited data?



Example 1: Write Anomaly
Scenario: 
• producer writes a message
• produce receives an ACK (acknowledgement) from the broker
• consumers never see the message

Cause: maybe the leader sent an ACK back, then crashed, before replicating the 
message to the followers.

How to avoid it?  Use strong acks.

Consumer initialization: 
• KafkaProducer(..., acks=0) 

don't wait for leader to send back ACK 
• KafkaProducer(..., acks=1) 

ACK after leader writes to its own log 
• KafkaProducer(..., acks="all") 

ACK after data is committed (slowest but strongest)

If you don't get an ACK that data is commited, usually best to retry in a loop (Kafka 
can be configured to do this for you).



Example 2: Read Anomaly
Scenario: 
• a consumer reads a message
• there is an attempt to read the message again later (same consumer, or other)
• message is gone, or changed

Cause: maybe the message was consumed from the leader before it was replicated 
to the followers; then the leader crashed and the new leader doesn't have that 
message for future consumption.

How to avoid it?  Never read un-committed data.

The leader does this automatically.



Fetch Behavior: Consumer vs. Follower
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Semantics (Meaning)

Programming Example:
• Runtime bug: the program crashed, there was clearly a problem
• Semantic bug: you need to understand the meaning of the results to say 

whether or not the program behaved correctly

In Systems:
• what does it mean when we get we get an ACK, or a write returns?
• the meaning depends on how we configured things...



At-most-once semantics

producer = KafkaProducer(..., acks=1) 
producer.send("my-topic", b"some-value") 

With acks as 0 or 1 and no retry, a successful write means the data was recorded at 
most once (ideally once, but if the leader crashes at a bad time, maybe zero times).



Using strong ACKs and retry

producer = KafkaProducer(..., acks="all", retries=10) 
producer.send("my-topic", b"some-value") 

Keep retrying until success (within reason -- for example, 10 times)

Problem: there are two reasons we might not get an ACK:

message message

ack

scenario 1 scenario 2



Using strong ACKs and retry

producer = KafkaProducer(..., acks="all", retries=10) 
producer.send("my-topic", b"some-value") 

Keep retrying until success (within reason -- for example, 10 times)

Problem: there are two reasons we might not get an ACK:

message message

ack

scenario 1 scenario 2

ackack

message written once message written twice

A strong ACK with retry provides at-least-once semantics
because we're guaranteed 1+ messages upon success



Are duplicate messages OK?

Yes, if they're idemponent.

"An operation is called idempotent when the effect of performing the operation 
multiple times is equivalent to the effect of performing the operation a single time"
~ Operating Systems: Three Easy Pieces, by Arpaci-Dusseau

x = 0 
y = 0 

def set_x(value): 
    global x 
    x = value 

def inc_y(value): 
    global y 
    y += value

# if we just do once, is it the same? 
set_x(123) 
set_x(123) 
set_x(123) 

# if we just do once, is it the same? 
inc_y(3) 
inc_y(3) 
inc_y(3)

TopHat



Supressing Duplicates

With some cleverness, we can make ANYTHING idempotent.

y = 0 
completed_ops = set() 

def inc_y(value, operation_id): 
    global y 
    if not operation_id in completed_ops: 
        y += value 
        completed_ops.add(operation_id) 

inc_y(3, 1251253) 
inc_y(3, 1251253)   # no effect 
inc_y(3, 1251253)   # no effect 

inc_y(3, 9876)      
inc_y(3, 9876)      # no effect 

inc_y(1, 5454)



Exactly-Once Semantics: Producer Side

Upon a successful write, the message will be considered exactly once (duplicates 
will be supressed by brokers or consumers).

Producer settings:
• acks="all"
• retry=N
• enable.idempotence=True

With idempontence enabled, producers automatically generate unique operation 
IDs and brokers supress duplicates (this has an extra cost).

You can use enable.idempotence in Java, but the kafka-python package doesn't 
support it.:
• need to handle it yourself
• often, messages have a unique ID anyway, so consumers can ignore dups
• Example: weather stations that emit one record per day -- if a consumer sees a 

date for a station it has seen before, ignore it



Exactly-Once Semantics: Consumer Side
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processing



Exactly-Once Semantics: Consumer Side
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Note!  Committing messages 
and commiting read offsets 
are two different ideas.



Exactly-Once Semantics: Consumer Side
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If we crash at a bad time, the 
offsets the next consumer 
gets from Kafka will only be 
approximately correct.



Approach 1: Manually Commit Offsets
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Approach 2: Externally Save Commits
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Conclusion

Every part of the system has a part to play in reliability and exactly-once semantics.

Producer:
• requesting strong acks
• retry
• idempotence

Broker:
• replicating data to followers
• failing over to new leader
• sending acks
• helping producer supress duplicates
• keeping uncommitted data hidden from consumers

Consumer:
• carefully handling read offsets
• sometimes supressing duplicates (if not handled by producers+brokers)


