
[544] Kafka Reliability
Tyler Caraza-Harter

Outline: Kafka Reliability

Kafka Replication

Fault Tolerance

Exactly-Once Semantics

Three brokers, 2 partitions, replication factor=1

clicks[0]

producer

msg

broker servers

msg msg msg

7 8 9

clicks[1] msg msg msg

3 4 5

msg

2

Three brokers, 2 partitions, replication factor=3

clicks[0]

producer

msg

broker servers

msg msg msg

7 8 9

clicks[1] msg msg msg

3 4 5

msg

2

clicks[0] msg msg msg

7 8 9

clicks[1] msg msg msg

3 4 5

msg

2

clicks[1] msg msg msg

3 4 5

msg

2

clicks[0] msg msg msg

7 8 9

leader replica

follower replica

leader replica

follower replica

follower replica

follower replica

• each partition has one
leader and RF-1
follower replicas

Three brokers, 2 partitions, replication factor=3

clicks[0]

producer

broker servers

msg msg msg

8 9 10

clicks[1] msg msg msg

3 4 5

msg

2

clicks[0] msg msg msg

7 8 9

clicks[1] msg msg msg

3 4 5

msg

2

clicks[1] msg msg msg

3 4 5

msg

2

clicks[0] msg msg msg

7 8 9

leader replica

follower replica

leader replica

follower replica

follower replica

follower replica

• each partition has one
leader and RF-1
follower replicas

• producers only send
to leaders

msg

7

only here

Fetch Requests

clicks[0]

producer

broker servers

msg msg msg

8 9 10

clicks[1] msg msg msg

3 4 5

msg

2

clicks[0]

clicks[1] msg msg msg

3 4 5

msg

2

clicks[1] msg msg msg

3 4 5

msg

2

clicks[0] msg msg msg

7 8 9

leader replica

follower replica

leader replica

follower replica

follower replica

follower replica

• each partition has one
leader and RF-1
follower replicas

• producers only send
to leaders

• followers constantly
fetch from leaders,
just like consumers do

msg

7

msg msg msg

8 9 10

msg

7

fetch

Followers: In-Sync vs. Lagging Too Far Behind

clicks[0]
producer

broker servers

msg msg msg

8 9 10

clicks[0]

clicks[0]

leader replica

follower replica
(in-sync)

follower replica
(lagging behind)

• followers that are
"keeping up" with
leader messages are
called "in-sync"

• definition is tunable,
and depends on
factors like how
recently a follower got
a batch with the most
recent messages

• some flexibility: in-
sync followers might
be a little behind the
leader

msg

7

msg msg

11 12

msg msg msg

8 9 10

msg

7

msg

11

msg

8

msg

7

last requested most-recent
message 6 seconds ago

last requested most-recent
message 20 seconds ago

Minimum In-Sync Replicas (Assume 2 Here)

clicks[0]
producer

broker servers

msg msg msg

8 9 10

clicks[0]

clicks[0]

leader replica

follower replica
(lagging behind)

follower replica
(lagging behind)

• min.insync.replicas
• often less than

replication factor

msg

7

msg

11

msg

7

msg

8

msg

7

msg

temporarily down

overloaded

Backoff: Not Enough Replicas Exception

clicks[0]
producer

broker servers

msg msg msg

8 9 10
leader replica

• min.insync.replicas
• often less than

replication factor
• NotEnough-

ReplicasExcept
ion

• reject some messages
until we can catch up

• bigger min: stronger
durability

• smaller min: better
write availability

msg

7

msg

11
backoff

clicks[0]

clicks[0]

follower replica
(lagging behind)

follower replica
(lagging behind)

msg

7

msg

8

msg

7

temporarily down

overloaded

Outline: Kafka Reliability

Kafka Replication

Fault Tolerance

Exactly-Once Semantics

What if the leader fails? Elect a new one!

clicks[0]
producer

broker servers

msg msg msg

8 9 10

clicks[0]

clicks[0]

leader replica

follower replica
(in-sync)

follower replica
(lagging behind)

msg

7

msg msg

11 12

msg msg msg

8 9 10

msg

7

msg

11

msg

8

msg

7

last requested most-recent
message 6 seconds ago

last requested most-recent
message 20 seconds ago

crash• partition temporarily
unavailable

• need to "elect" new
leader (not democratic)

• special "controller"
broker (chosen with help
of Zookeeper) elects an
in-sync replica as new
leader

• note: Kafka is getting new
capabalities to handle this,
so the Zookeeper
dependency is going
away...

Kafka Replica Failover

clicks[0]
producer

broker servers

msg msg msg

8 9 10

clicks[0]

clicks[0]

follower replica

leader replica

follower replica
(lagging behind)

msg

7

msg msg

11 12

msg msg msg

8 9 10

msg

7

msg

11

msg

8

msg

7

last requested most-recent
message 6 seconds ago

last requested most-recent
message 20 seconds ago

crash

• failover takes some time
• Note: Cassandra tries to

be highly available, so it
doesn't differentiate
leader from follower
replicas to avoid
downtime

Some Messages Seen by Old Leader Lost

clicks[0]
producer

broker servers

msg msg msg

8 9 10

clicks[0]

clicks[0]

follower replica

leader replica

follower replica
(lagging behind)

msg

7

msg

11

msg msg msg

8 9 10

msg

7

msg

11

msg

8

msg

7

last requested most-recent
message 6 seconds ago

last requested most-recent
message 20 seconds ago

msg

12

• new leader decides what
goes it each offset

• it probably wrote
different messages at
some offsets than what
old leader wanted there

• old leader doesn't
immediately get its job
back upon recovery

recovered

Review "Committed": WhatsApp Acks Example

https://faq.whatsapp.com/665923838265756

these are examples of "acks" (acknowledgements)

In distributed storage systems/databases, an ack means our data is committed.

"Committed" means our data is "safe", even if bad things happen. The definition
varies system to system, based on what bad things are considered. For example:

• a node could hang until rebooted; a node's disk could permanently fail
• a rack could lose power; a data center could be destroyed

In Kafka's leader/follower replica design, what are some "bad things" we might worry
about?

Kafka: Committed Messages

Messages are "commited" when written to ALL in-sync replicas.

Depending on how many are in-sync, the strength of the guarantee can vary, but
min.insync.replicas lets us specify a worst case.

If number of concurrent broker failures < min.insync.replicas, then our committed
data is safe, even if the leader fails (because we can elect another in-sync replica,
and all in-sync replicas have all committed data).

Committed Messages

clicks[0]

broker servers

msg msg msg

8 9 10

clicks[0]

clicks[0]

follower replica
(in-sync)

leader replica

follower replica
(lagging behind)

msg

7

msg msg msg

8 9 10

msg

7

msg

11

msg

8

msg

7

last requested most-recent
message 6 seconds ago

last requested most-recent
message 20 seconds ago

What is committed?
• assume RF=3 and

minimum in-sync=2
• is message 8 commited?
• message 10?
• message 11?

TopHat

Working with Committed Data

How can we avoid "anomalies" (unexpected system behavior) by
taking advantage of commited data?

Example 1: Write Anomaly
Scenario:
• producer writes a message
• produce receives an ACK (acknowledgement) from the broker
• consumers never see the message

Cause: maybe the leader sent an ACK back, then crashed, before replicating the
message to the followers.

How to avoid it? Use strong acks.

Consumer initialization:
• KafkaProducer(..., acks=0)

don't wait for leader to send back ACK
• KafkaProducer(..., acks=1)

ACK after leader writes to its own log
• KafkaProducer(..., acks="all")

ACK after data is committed (slowest but strongest)

If you don't get an ACK that data is commited, usually best to retry in a loop (Kafka
can be configured to do this for you).

Example 2: Read Anomaly
Scenario:
• a consumer reads a message
• there is an attempt to read the message again later (same consumer, or other)
• message is gone, or changed

Cause: maybe the message was consumed from the leader before it was replicated
to the followers; then the leader crashed and the new leader doesn't have that
message for future consumption.

How to avoid it? Never read un-committed data.

The leader does this automatically.

Fetch Behavior: Consumer vs. Follower

clicks[0]

broker servers

msg msg msg

8 9 10

clicks[0]

clicks[0]

leader replica

follower replica
(in-sync)

follower replica
(lagging behind)

msg

7

msg msg

11 12

msg msg msg

8 9 10

msg

7

msg

8

msg

7

• consumer fetch: leader WILL
NOT send messages until it
knows they are committed

• follower fetch: leader WILL
send uncommited messages

commited uncommitted

consumer

fetch

fetch

Outline: Kafka Reliability

Kafka Replication

Fault Tolerance

Exactly-Once Semantics

Semantics (Meaning)

Programming Example:
• Runtime bug: the program crashed, there was clearly a problem
• Semantic bug: you need to understand the meaning of the results to say

whether or not the program behaved correctly

In Systems:
• what does it mean when we get we get an ACK, or a write returns?
• the meaning depends on how we configured things...

At-most-once semantics

producer = KafkaProducer(..., acks=1)
producer.send("my-topic", b"some-value")

With acks as 0 or 1 and no retry, a successful write means the data was recorded at
most once (ideally once, but if the leader crashes at a bad time, maybe zero times).

Using strong ACKs and retry

producer = KafkaProducer(..., acks="all", retries=10)
producer.send("my-topic", b"some-value")

Keep retrying until success (within reason -- for example, 10 times)

Problem: there are two reasons we might not get an ACK:

message message

ack

scenario 1 scenario 2

Using strong ACKs and retry

producer = KafkaProducer(..., acks="all", retries=10)
producer.send("my-topic", b"some-value")

Keep retrying until success (within reason -- for example, 10 times)

Problem: there are two reasons we might not get an ACK:

message message

ack

scenario 1 scenario 2

ackack

message written once message written twice

A strong ACK with retry provides at-least-once semantics
because we're guaranteed 1+ messages upon success

Are duplicate messages OK?

Yes, if they're idemponent.

"An operation is called idempotent when the effect of performing the operation
multiple times is equivalent to the effect of performing the operation a single time"
~ Operating Systems: Three Easy Pieces, by Arpaci-Dusseau

x = 0
y = 0

def set_x(value):
 global x
 x = value

def inc_y(value):
 global y
 y += value

if we just do once, is it the same?
set_x(123)
set_x(123)
set_x(123)

if we just do once, is it the same?
inc_y(3)
inc_y(3)
inc_y(3)

TopHat

Supressing Duplicates

With some cleverness, we can make ANYTHING idempotent.

y = 0
completed_ops = set()

def inc_y(value, operation_id):
 global y
 if not operation_id in completed_ops:
 y += value
 completed_ops.add(operation_id)

inc_y(3, 1251253)
inc_y(3, 1251253) # no effect
inc_y(3, 1251253) # no effect

inc_y(3, 9876)
inc_y(3, 9876) # no effect

inc_y(1, 5454)

Exactly-Once Semantics: Producer Side

Upon a successful write, the message will be considered exactly once (duplicates
will be supressed by brokers or consumers).

Producer settings:
• acks="all"
• retry=N
• enable.idempotence=True

With idempontence enabled, producers automatically generate unique operation
IDs and brokers supress duplicates (this has an extra cost).

You can use enable.idempotence in Java, but the kafka-python package doesn't
support it.:
• need to handle it yourself
• often, messages have a unique ID anyway, so consumers can ignore dups
• Example: weather stations that emit one record per day -- if a consumer sees a

date for a station it has seen before, ignore it

Exactly-Once Semantics: Consumer Side

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

H I

3 4

g1 offsets

clicks[0] 2

clicks[1] 1

consumer 1

c = KafkaConsumer("clicks",
 group_id="g1",
 ...)
while True:

batch = c.poll(1000)
...

Topic Partitions

consumer
group 1 (g1)

Suppose consumer dies and is replaced by
another in the same group
• don't want replacement to miss any

messages
• don't want replacement to repeat any

processing

Exactly-Once Semantics: Consumer Side

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

H I

3 4

g1 offsets

clicks[0] 2

clicks[1] 1

consumer 1

c = KafkaConsumer("clicks",
 group_id="g1",
 enable_auto_commit=True,
 auto_commit_interval_ms=5000,
 ...)
while True:

batch = c.poll(1000)
...Topic Partitions

consumer
group 1 (g1)

g1 offsets

clicks[0] 2

clicks[1] 1

consumerKafka

occasionally
commit offsets

Note! Committing messages
and commiting read offsets
are two different ideas.

Exactly-Once Semantics: Consumer Side

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

H I

3 4

g1 offsets

clicks[0] 4

clicks[1] 3

consumer 1

c = KafkaConsumer("clicks",
 group_id="g1",
 enable_auto_commit=True,
 auto_commit_interval_ms=5000,
 ...)
while True:

batch = c.poll(1000)
...Topic Partitions

consumer
group 1 (g1)

g1 offsets

clicks[0] 2

clicks[1] 1

consumerKafka

If we crash at a bad time, the
offsets the next consumer
gets from Kafka will only be
approximately correct.

Approach 1: Manually Commit Offsets

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

H I

3 4

g1 offsets

clicks[0] 4

clicks[1] 3

consumer 1

c = KafkaConsumer("clicks",
 group_id="g1",
 enable_auto_commit=False,
 ...)
while True:

batch = c.poll(1000)
...
c.commit() # manually commit read offsetsTopic Partitions

consumer
group 1 (g1)

g1 offsets

clicks[0] 2

clicks[1] 1

consumerKafka

Approach 2: Externally Save Commits

clicks[0] A B C

0 1 2

D

3

clicks[1] E F G

0 1 2

H I

3 4

g1 offsets

clicks[0] 4

clicks[1] 3

consumer 1

c = KafkaConsumer("clicks",
 group_id="g1",
 ...)
TODO: seek to previous position
while True:

batch = c.poll(1000)
...
TODO: write offsets to a DB or fileTopic Partitions

consumer
group 1 (g1)

consumer

Conclusion

Every part of the system has a part to play in reliability and exactly-once semantics.

Producer:
• requesting strong acks
• retry
• idempotence

Broker:
• replicating data to followers
• failing over to new leader
• sending acks
• helping producer supress duplicates
• keeping uncommitted data hidden from consumers

Consumer:
• carefully handling read offsets
• sometimes supressing duplicates (if not handled by producers+brokers)

