[544] Spark Streaming

Tyler Caraza-Harter

Outline: Spark Streaming

DStreams

Grouped Aggregates

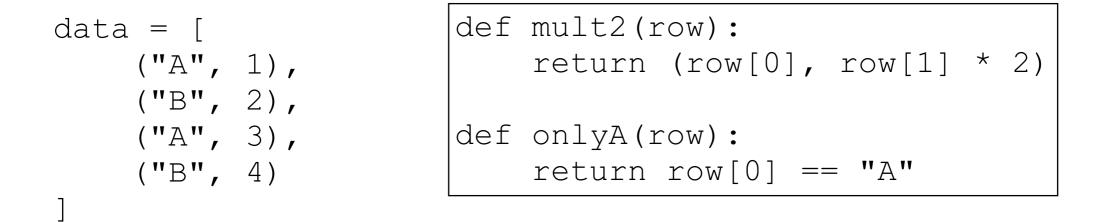
Watermarks

Pivoting

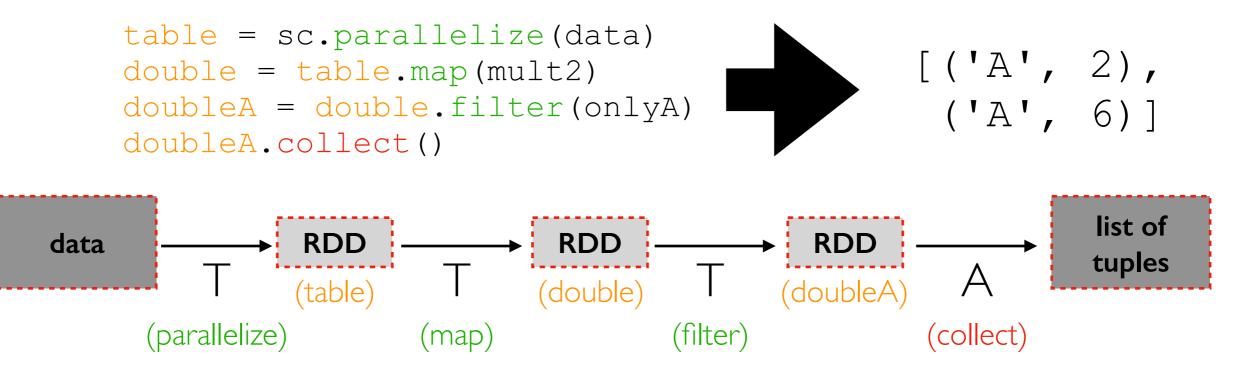
Joining

Exactly-Once Semantics

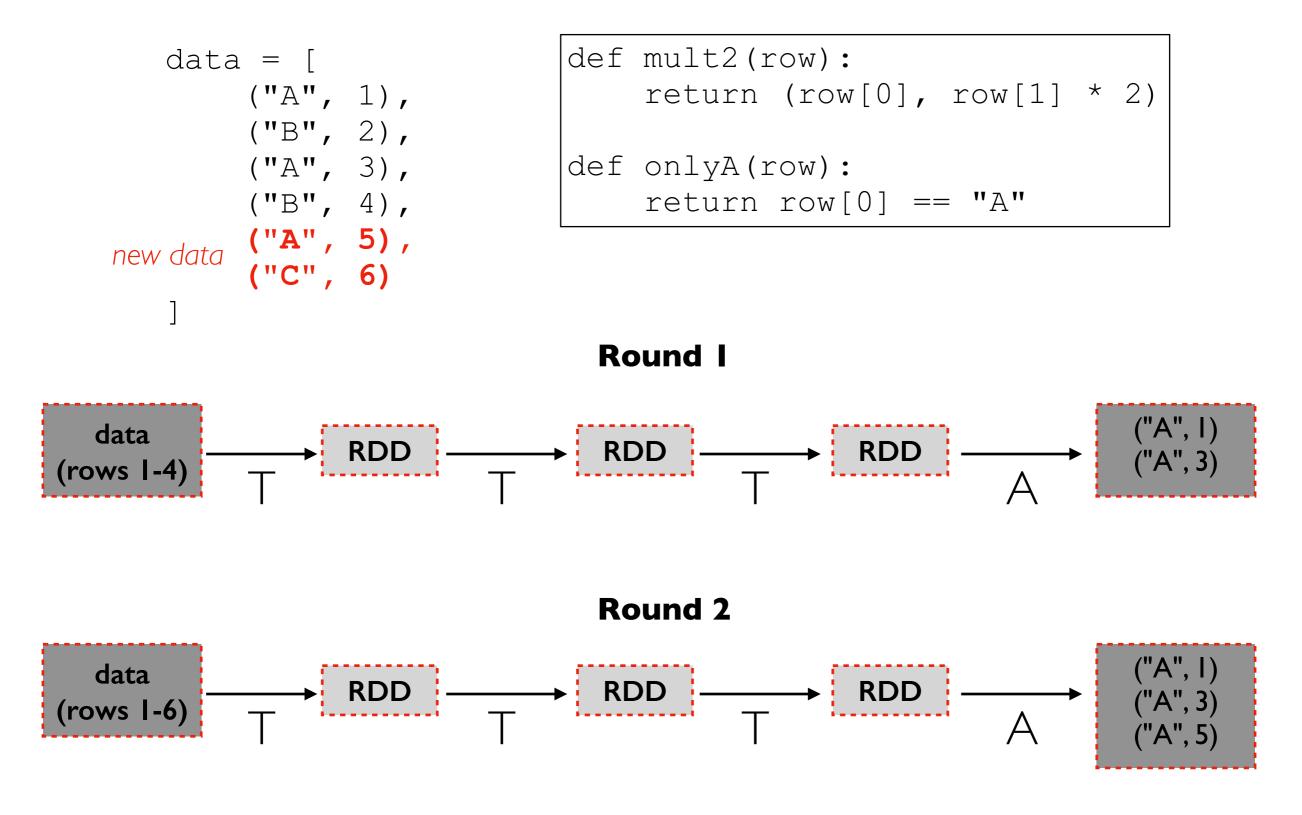
Review Data Lineage: Transformations and Actions



goal: get 2 times the second column wherever the first column is "A"

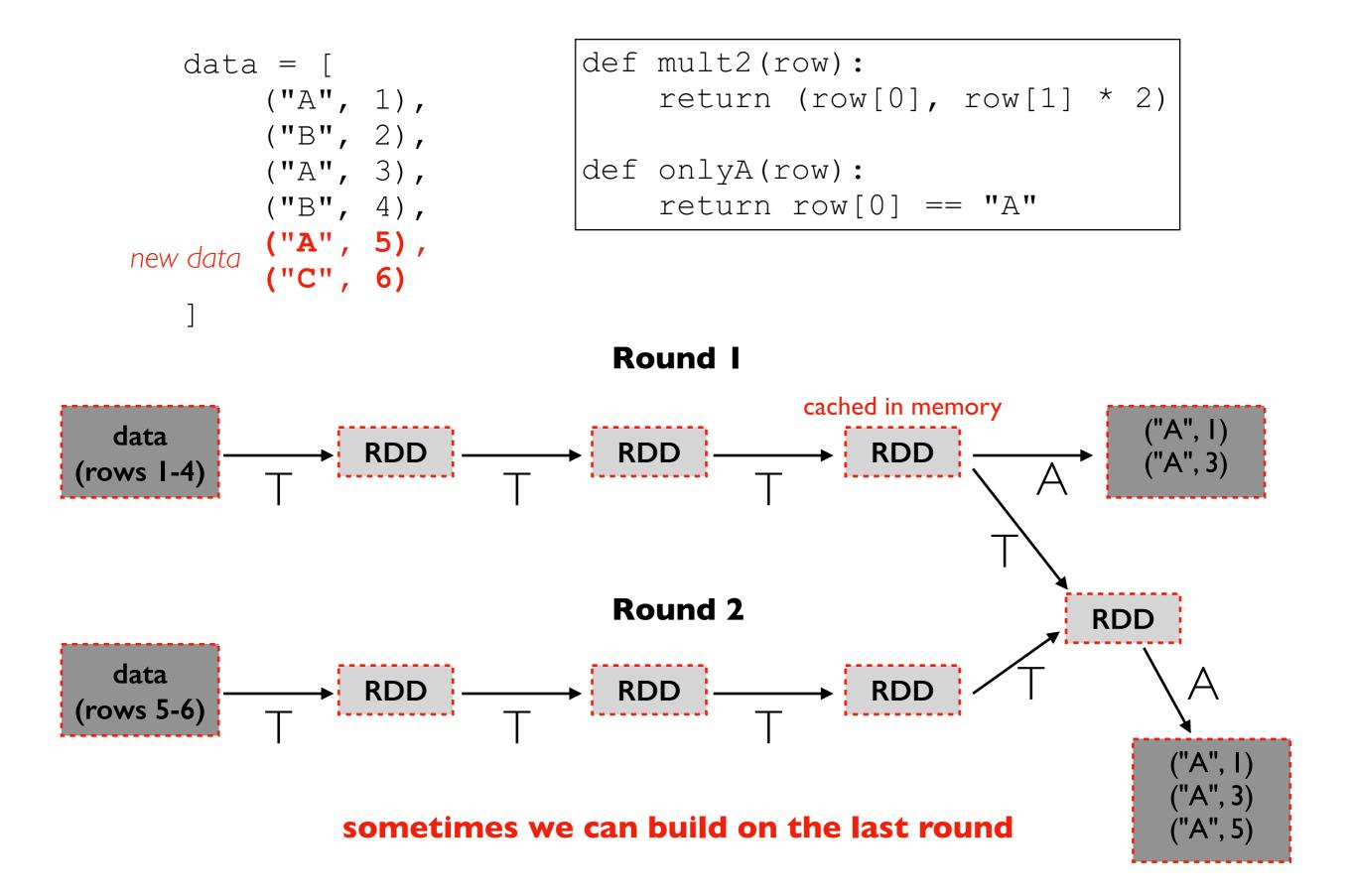


Handling Data Changes: Re-Calculate Everything



re-doing work is wasteful!

Handling Data Changes: Incremental Computation



Some DataFrames constantly grow

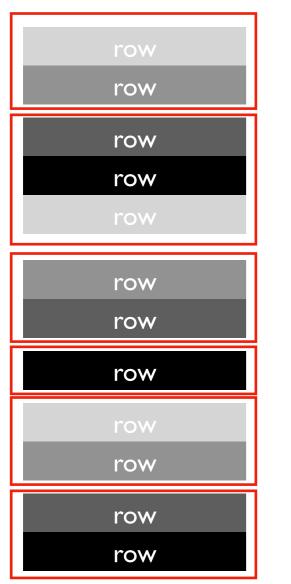
row
row

continuously growing table

Mini Batches

continuously growing table

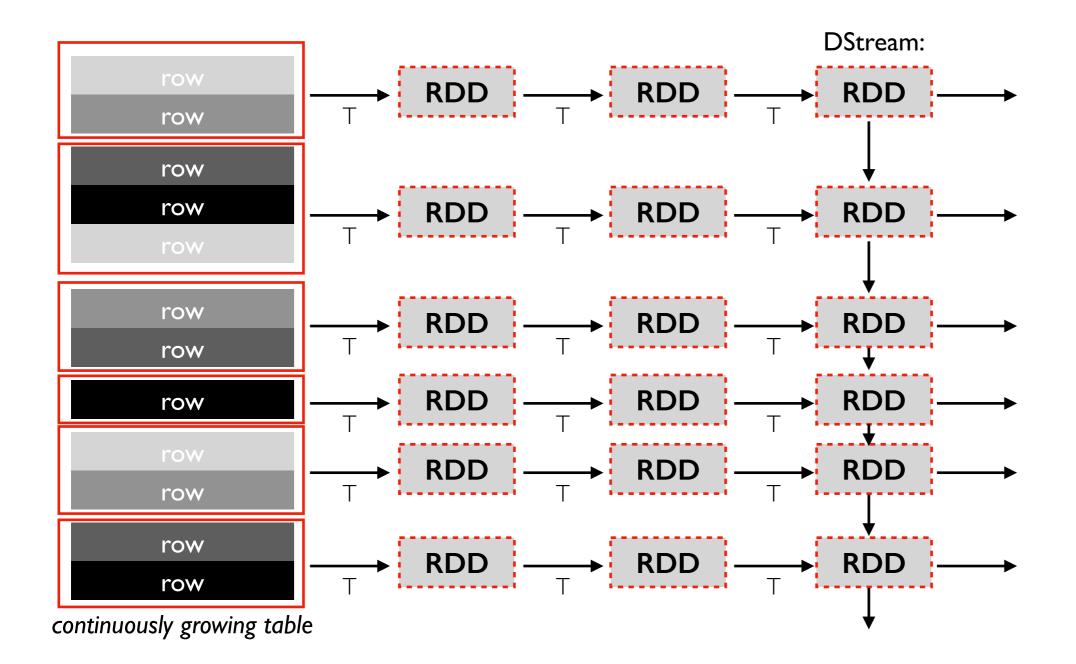
Trigger Frequency



continuously growing table

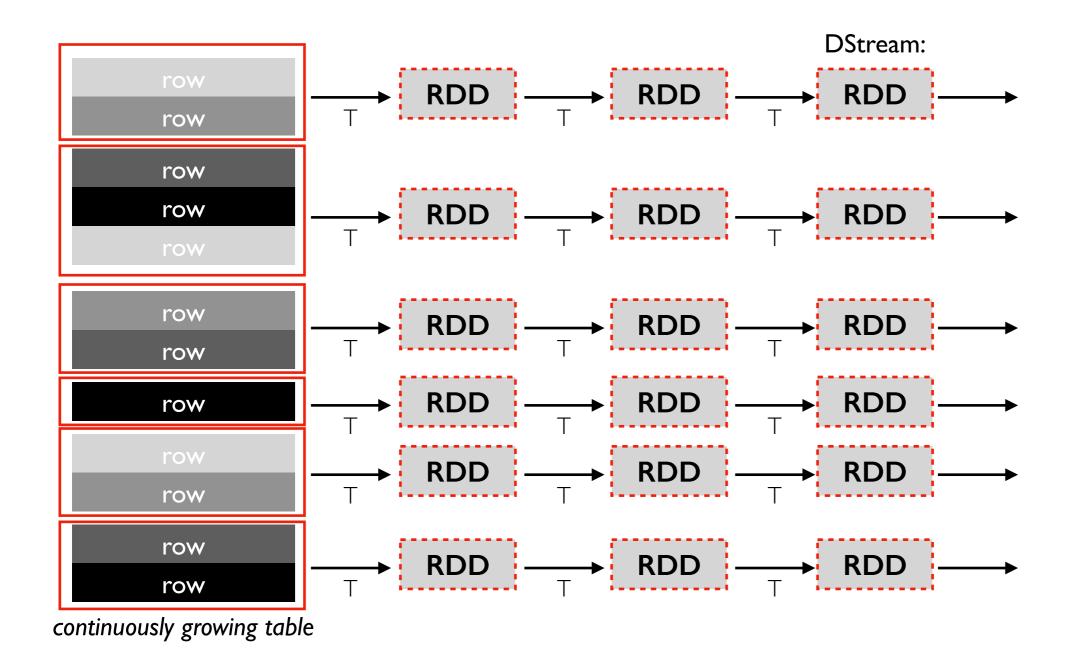
trigger(processingTime="4 seconds")

DStream (Stateful)



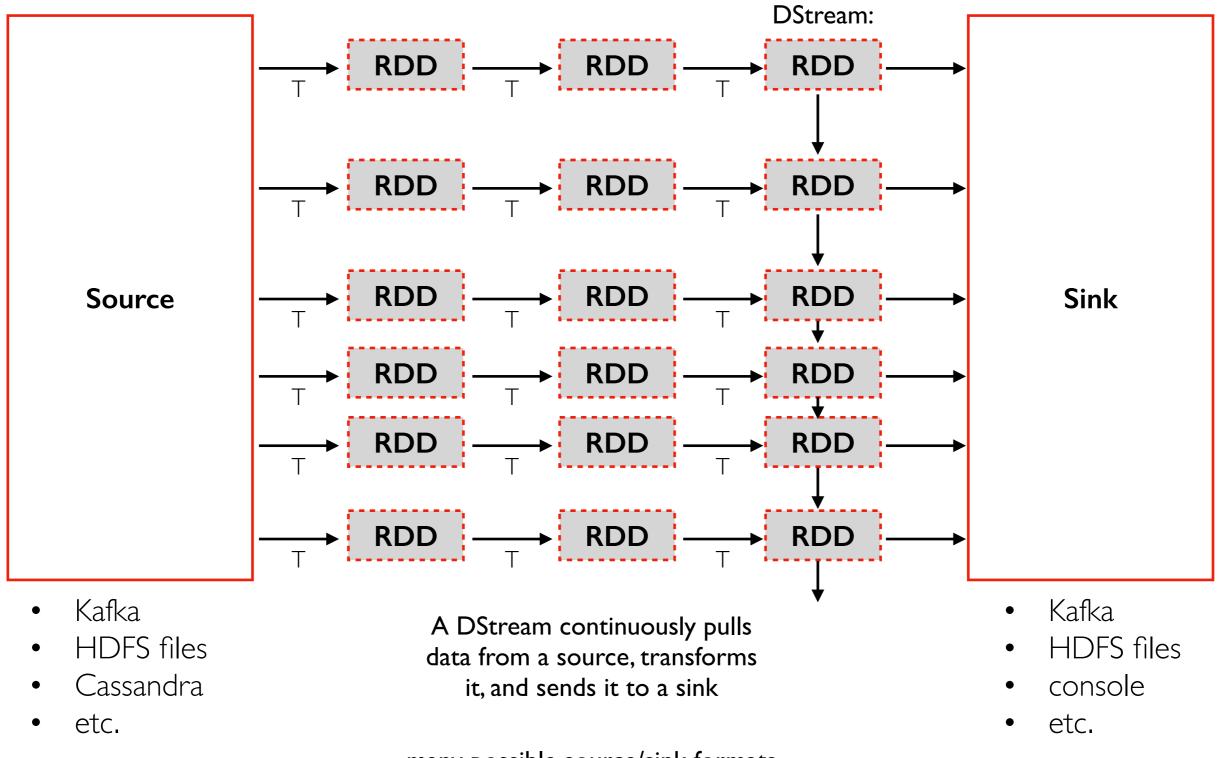
A Spark DStream is a series of RDDs

DStream (Stateless)



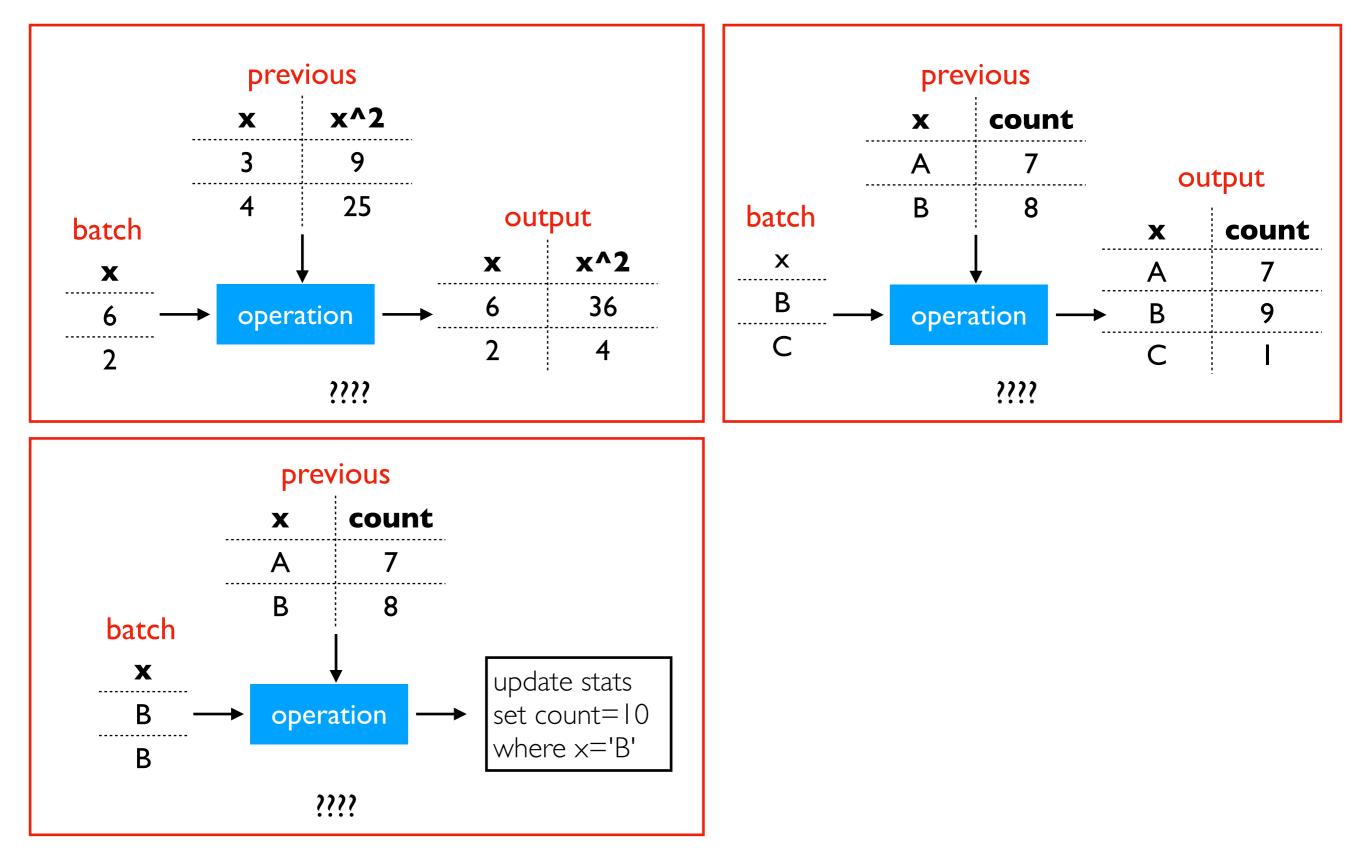
If we can compute on each batch without using state from previous computations, it is stateless.

Source => DStream => Sink

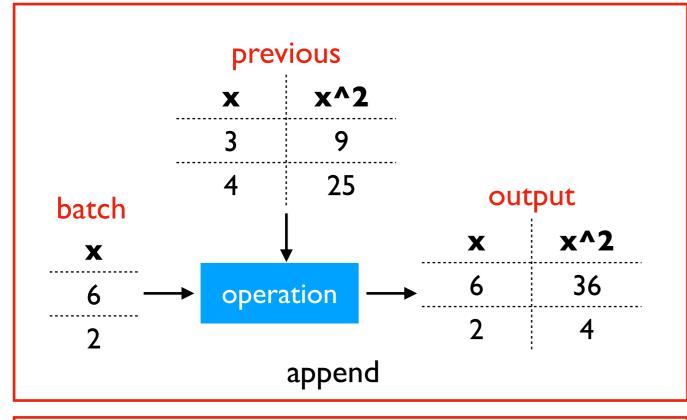


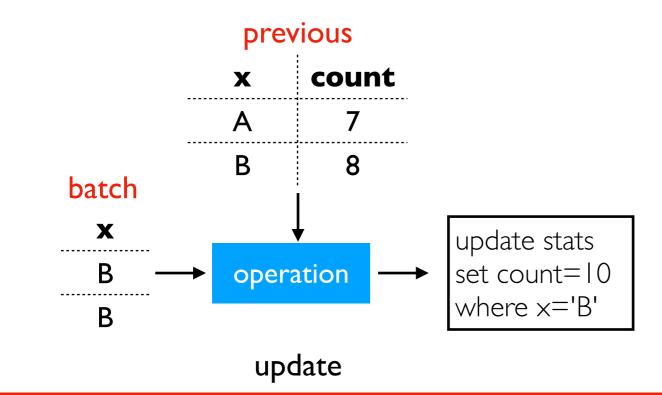
many possible source/sink formats

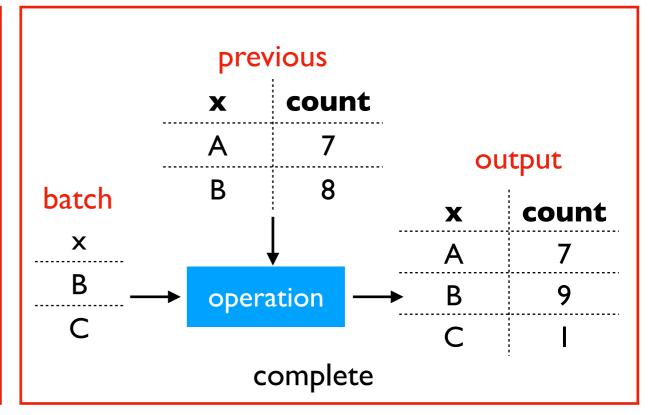
Output Modes: Update, Complete, Append



Output Modes: Update, Complete, Append





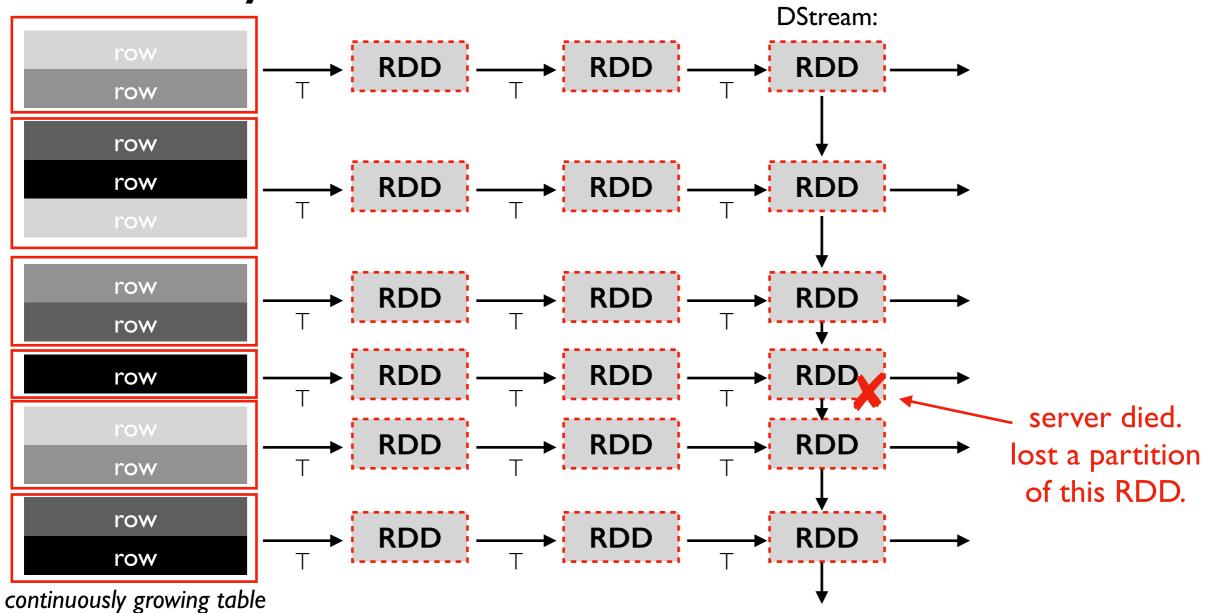


Different modes are available depending on transformation and output format.

Examples:

- **update**: output is usually a DB
- **append**: generally narrow transformations (previous output rows cannot change)
- **complete**: often for aggregates (otherwise too expensive so not allowed)

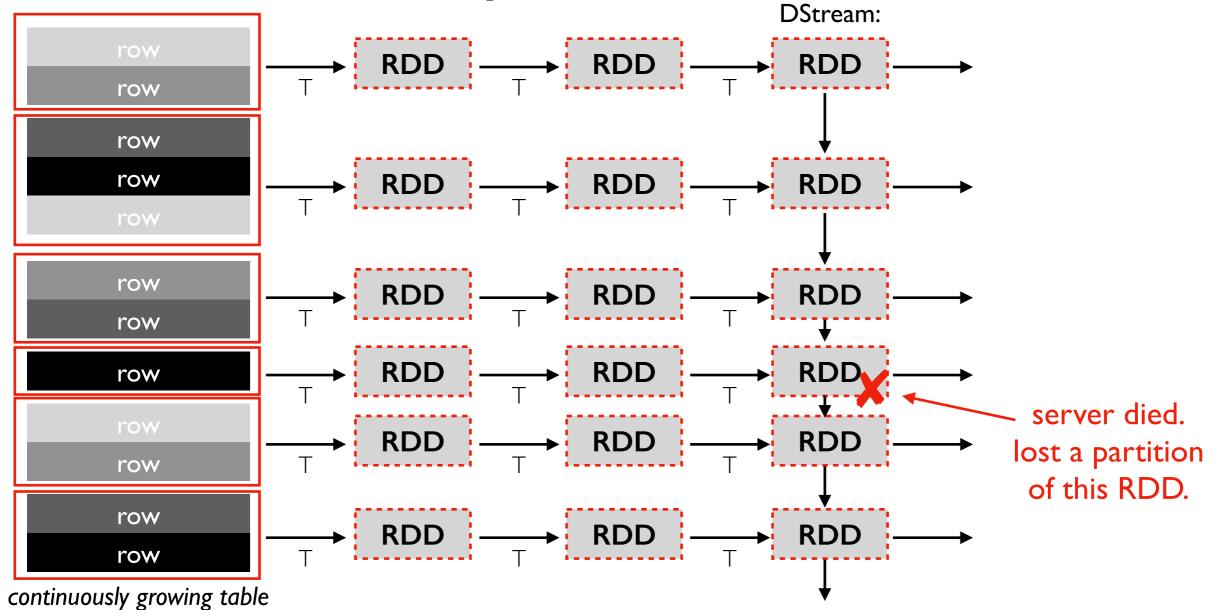
Recovery



Recovery:

- Spark usually doesn't replicate data because RDDs tell us how to recompute lost data
- What if source data is no longer available? (e.g., beyond Kafka retention time)
- What if it takes too long to recover?

Effecient Recovery



Recovery:

- Spark usually doesn't replicate data because RDDs tell us how to recompute lost data
- What if source data is no longer available? (e.g., beyond Kafka retention time)
- What if it takes too long to recover?

Spark Optimizations:

- Often, every worker can help with recovery work (i.e., recomputing data for an RDD)
- Checkpoint DStream once every 10 batches.

Outline: Spark Streaming

DStreams

Grouped Aggregates

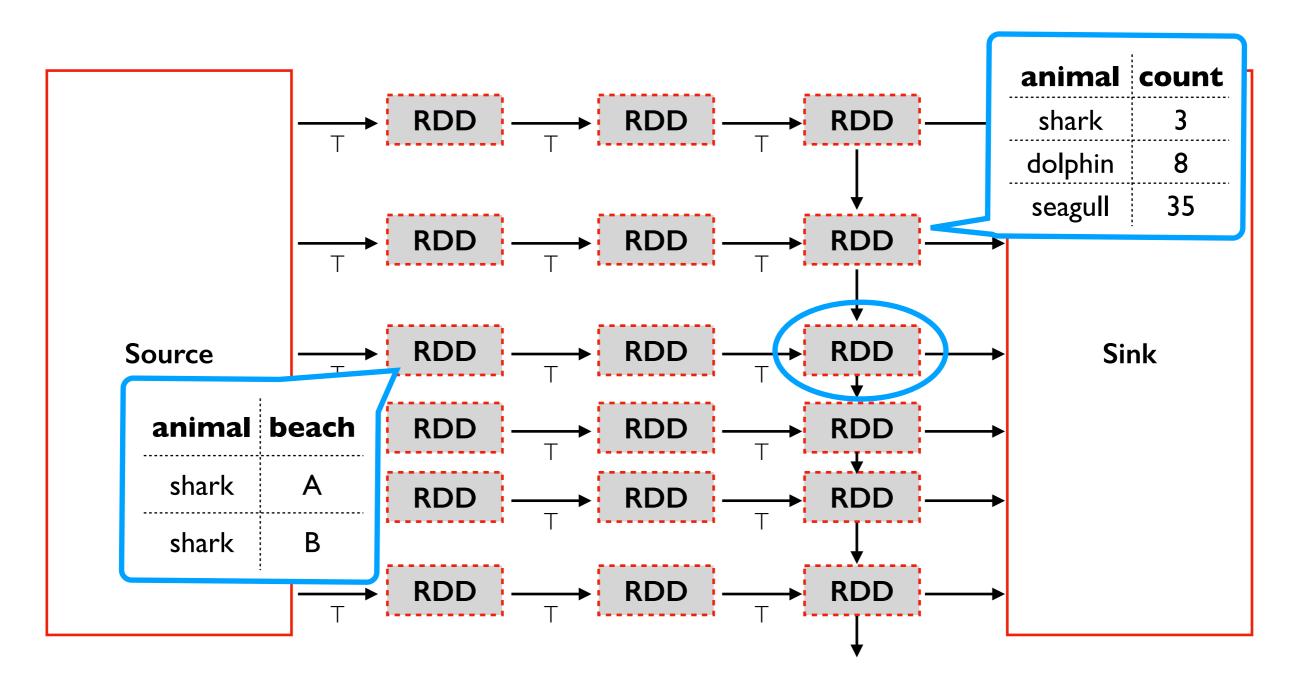
Watermarks

Pivoting

Joining

Exactly-Once Semantics

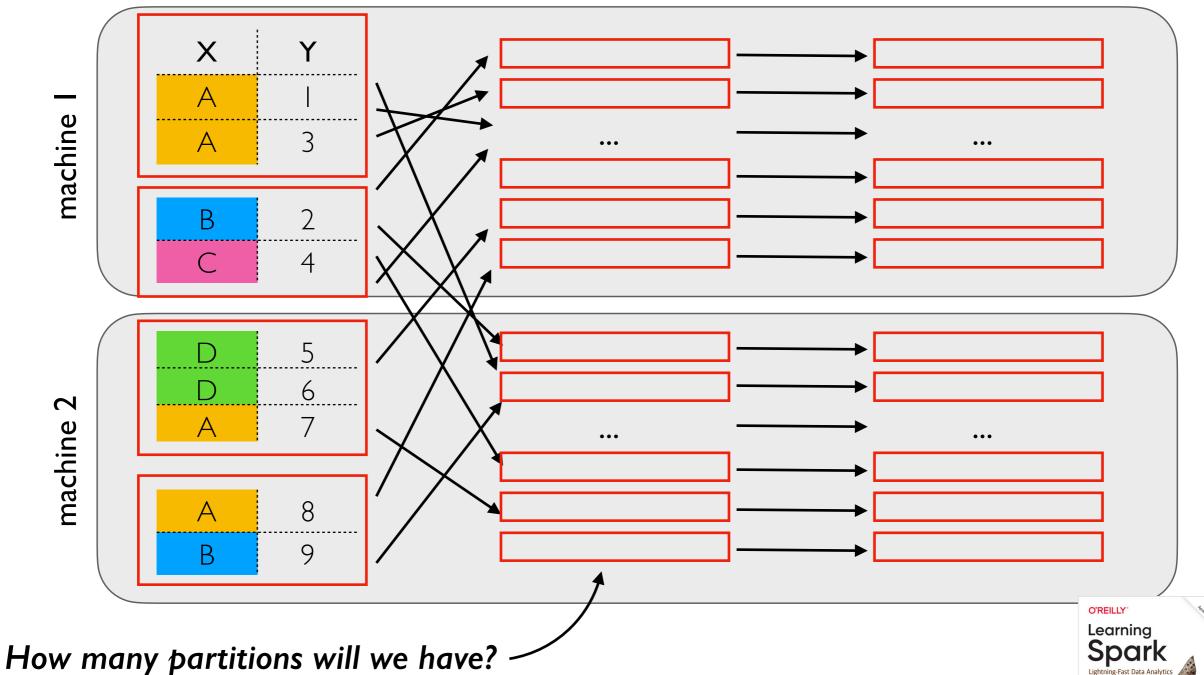
Incremental Aggregations



SELECT animal, COUNT(*) FROM sightings GROUP BY animal

- many aggregations are easy to compute incrementally
- mode: update or complete (append usually not valid because previous rows change)
- space for state proportional to unique categories

Grouped Aggregate Internals: Shuffle Partitions



• spark.sql.shuffle.partitions (default 200) sets this -- fixed for whole application

- Often need to reduce for streaming jobs
- Batch jobs can automatically coallesce small partitions into bigger ones?
- Why not optimized for streaming? One challenge: coallescing based on data so far probably isn't good for future data. Avoid re-shuffling existing counts.

see Epilogue: Apache Spark 3.0

Outline: Spark Streaming

DStreams

Grouped Aggregates

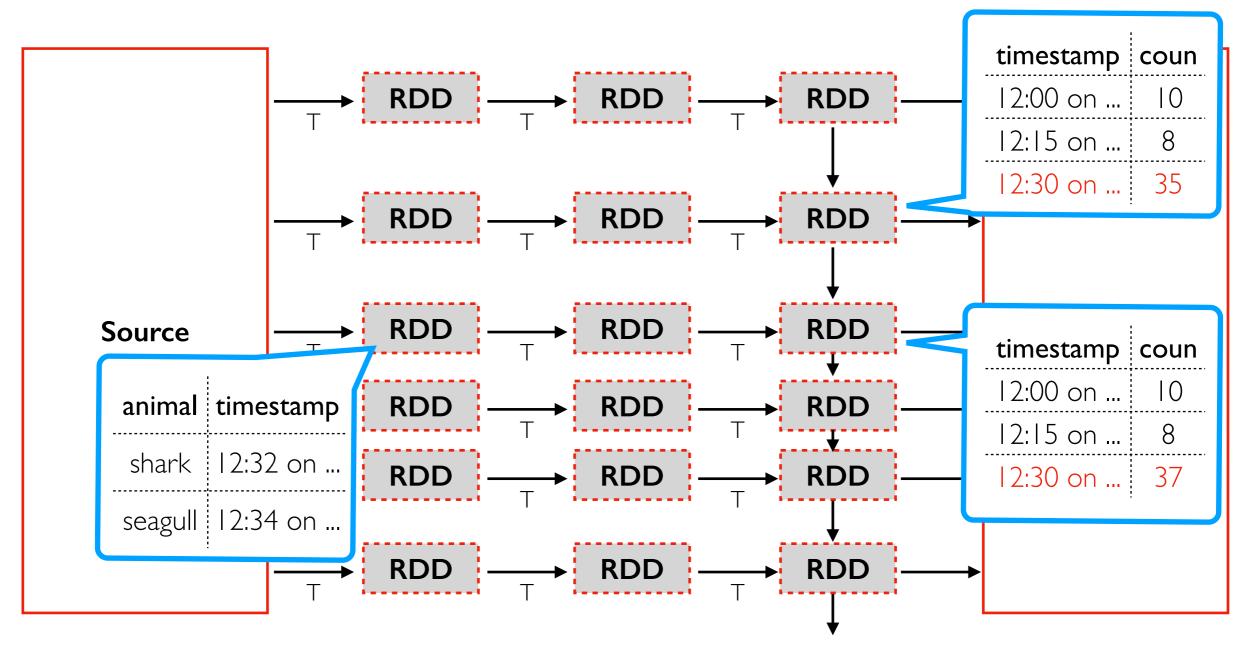
Watermarks

Pivoting

Joining

Exactly-Once Semantics

Grouping By Time Intervals



Observations:

• number of groups (and RAM needed) grows indefinitely with time

- new batches contain recent times
- old times might occasionally pop up (Kafka delays)

(animals

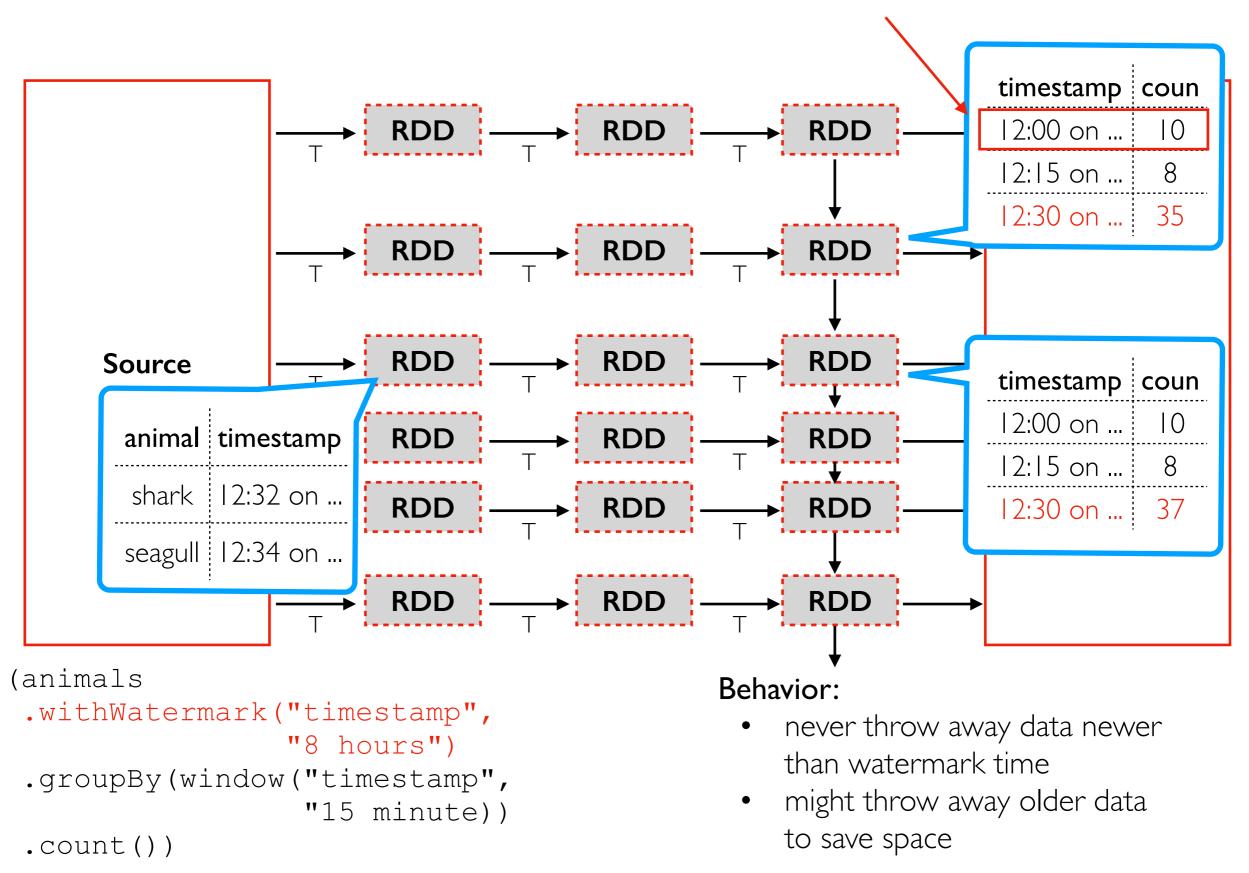
.groupBy(window("timestamp",

"15 minute))

.count())

Watermarks

Spark can discard this running count after 8:15pm because it is unlikely the pipeline will fall 8 hours behind



Outline: Spark Streaming

DStreams

Grouped Aggregates

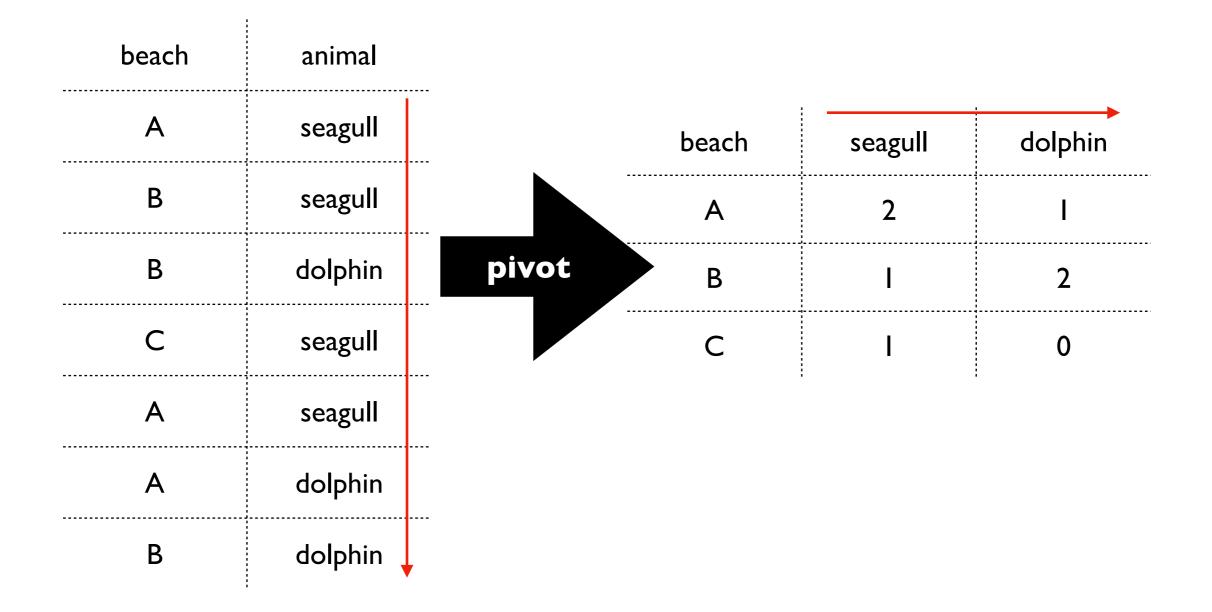
Watermarks

Pivoting

Joining

Exactly-Once Semantics

Pivots



what if we add a row with previously unseen values?

Pivots

beach	animal
А	seagull
В	seagull
В	dolphin
С	seagull
А	seagull
А	dolphin
В	dolphin
D	shark 🗸

	beach	seagull	dolphin	shark
	Α	2	I	0
pivot	В	I	2	0
	С	I	0	0
	D	0	0	I

- **new row**: OK for batching and streaming
- new col: only OK for batching
- with streaming, it would cause consfusion if columns were adding mid query (how would somebody even query from our results?)
- some operations like pivot are supported for batching but not streaming

Outline: Spark Streaming

DStreams

Grouped Aggregates

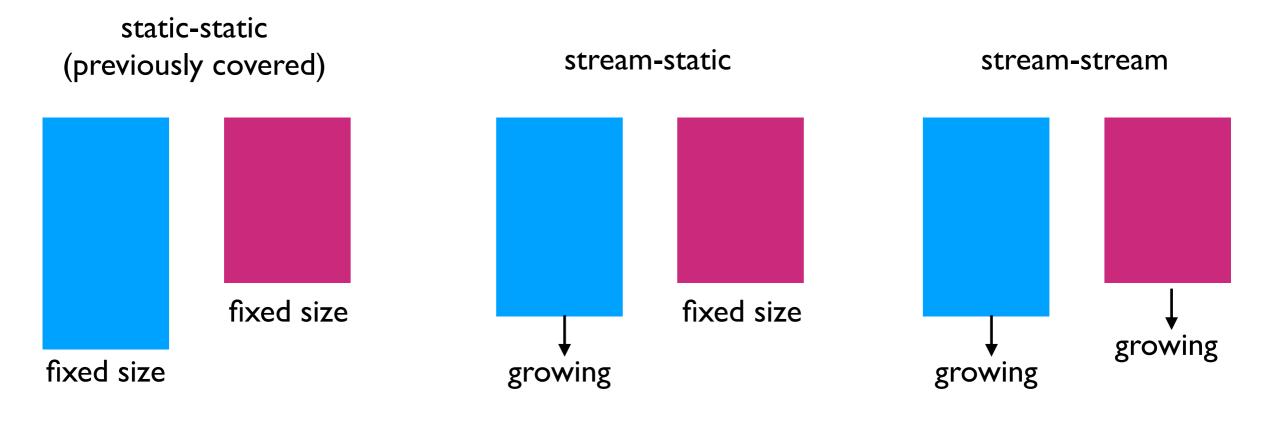
Watermarks

Pivoting

Joining

Exactly-Once Semantics

JOIN Scenarios

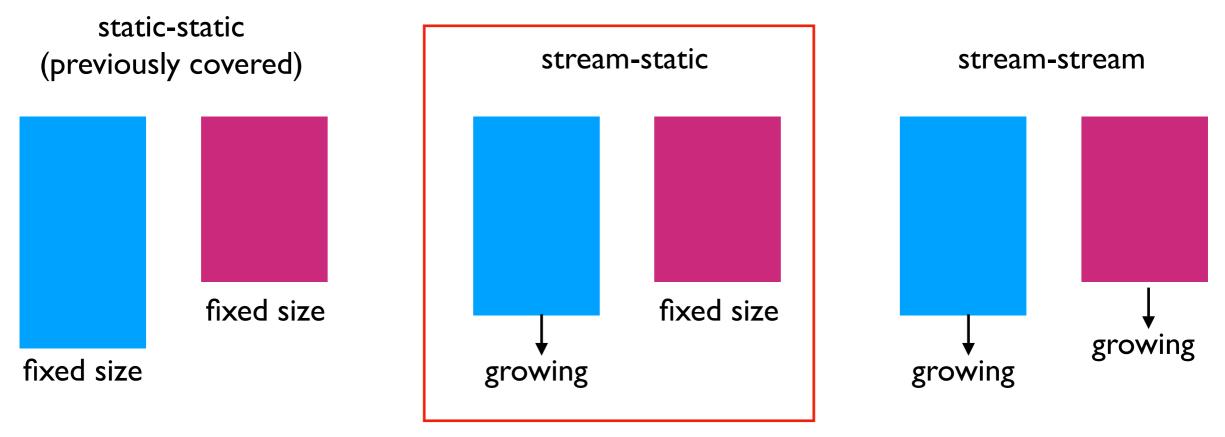


static-static review:

- shuffle sort merge join
- broadcast hash join

- Spark has at least some support for each scenario
- stream-stream can use an every increasing amout of memory if we're not carefuly (need watermarking)

JOIN Scenarios



static-static review:

- shuffle sort merge join
- broadcast hash join

- Spark has at least some support for each scenario
- stream-stream can use an every increasing amout of memory if we're not carefuly (need watermarking)

Stream-Static INNER JOIN

animals

id	name	
Ι	dolphin	
2	shark	
3	seagull	
fixed		

sightings

beach	animal_id	
А	3	
В	3	
A	2	
С	4	
growing		
¥		

what known animals do we see?

SELECT beach, name
FROM sightings
INNER JOIN animals
ON sightings.animal_id=animals.id

results		
beach	name	
A	seagull	
В	seagull	
А	shark	
growing ↓		
•		

Stream-Static LEFT JOIN

animals

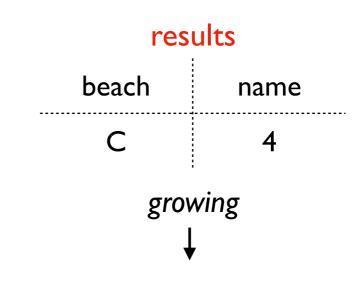
id	name	
Ι	dolphin	
2	shark	
3	seagull	
fixed		

sightings

beach	animal_id	
A	3	
В	3	
A	2	
С	4	
growing		
¥		

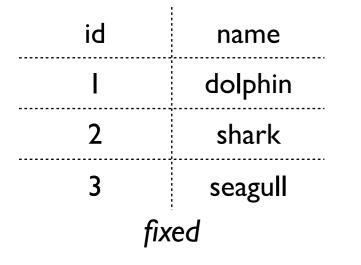
are there any sightings of unknown animals?

SELECT beach, animal_id FROM sightings LEFT JOIN animals ON sightings.animal_id=animals.id WHERE name IS NULL



Stream-Static RIGHT JOIN

animals

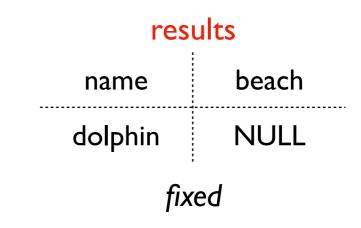


sightings

beach	animal_id	
А	3	
В	3	
А	2	
С	4	
growing		
ţ		

are there any animals that are never seen?

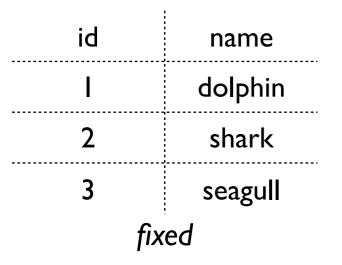
SELECT name, beach FROM sightings **RIGHT JOIN** animals ON sightings.animal_id=animals.id WHERE beach IS NULL



why is it impossible to compute the results, even though it would be easy for static-static?

Cannot RIGHT JOIN if right is static; Cannot LEFT JOIN if left is static

animals

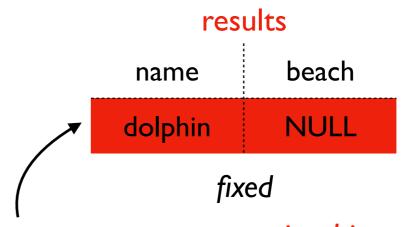


sightings

beach	animal_id	
A	3	
В	3	
A	2	
С	4	
growing		
¥		

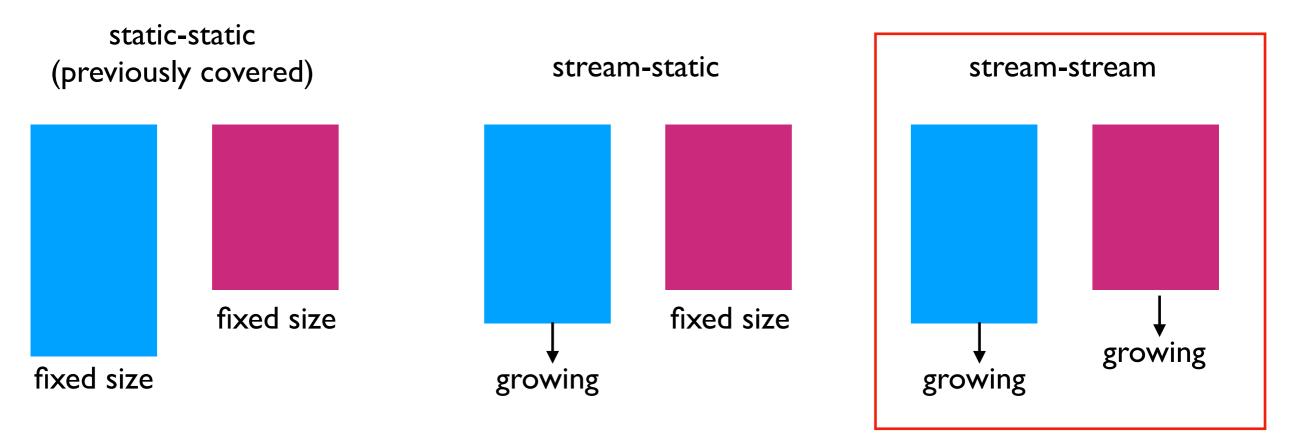
are there any animals that are never seen?

SELECT name, beach FROM sightings **RIGHT JOIN** animals ON sightings.animal_id=animals.id WHERE beach IS NULL



we can never say an animal is never seen if we keep seeing animals forever, so this query is illogical (and unsupported by Spark)

JOIN Scenarios



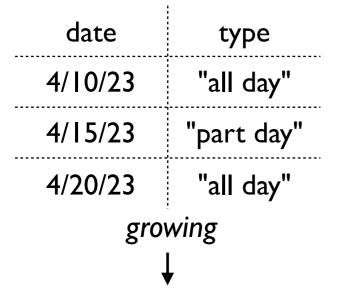
static-static review:

- shuffle sort merge join
- broadcast hash join

- Spark has at least some support for each scenario
- stream-stream can use an every increasing amout of memory if we're not carefuly (need watermarking)

Stream-Stream

closures



sightings

date	animal	
4/13/23	seagull	
4/14/23	seagull	
4/14/23	shark	
4/15/23	dolphin	
growing		
Ļ	,	

how many sharks are seen on days when the beach is closed?

SELECT COUNT(*)
FROM sightings
INNER JOIN closures
ON sightings.date=closures.date
WHERE animal = 'shark'

, **challenge:** we can't "forget" about this row if we might later learn about a beach closure on the 14th (for example, from a lagging Kafka stream)

solution: use watermarks (like for grouped aggregates)

note: Spark works without watermarks; it just keeps using more memory indefinitely

Outline: Spark Streaming

DStreams

Grouped Aggregates

Watermarks

Pivoting

Joining

Exactly-Once Semantics

Exactly-Once Semantics

If a task crashes, we can restart a new one, but we don't want to:

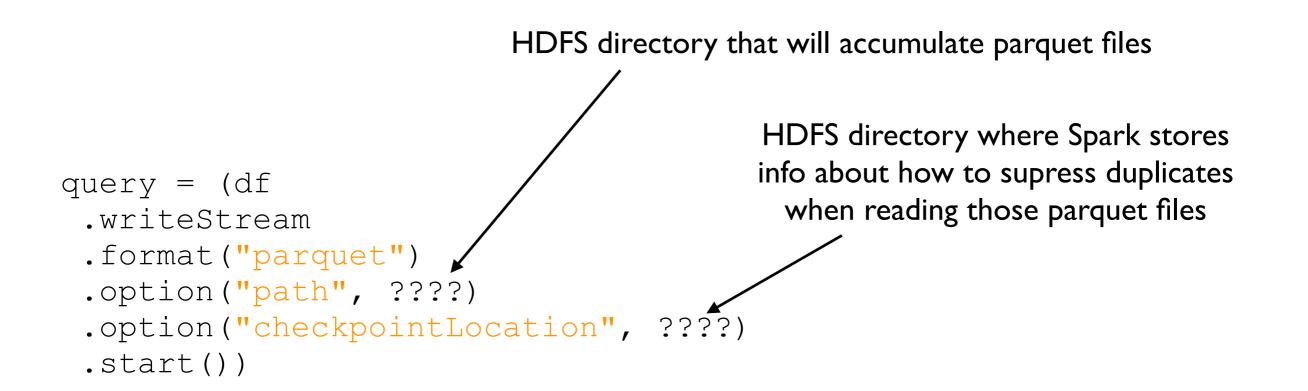
- double count any row
- miss any row

Spark can achieve exactly-once semantics given 3 features

- your code is "deterministic" (does same thing each time given same inputs)
- **source:** it's possible to go back and re-read older inputs that the previous task was processing when it crashed (Kafka makes this easy, within the retention period)
- **sink:** it is "idempotent" (can supress duplicates)

 file sink (parquet files on HDFS) supports this --Spark writes checkpoint files that identify which output files correspond to which input messages

Parquet on HDFS



When Spark reads a directory of parquet files, it automatically supresses duplicates. But be careful reading individual parquet files in a directory yourself, because then you might see those duplicates.

Conclusion

Spark streaming is frequent batch computing

- DStream is series of RDDs
- Most things we can do with regular DataFrames can be done with streams
- Not quite realtime, but fast crash recovery

Performance

- choose shuffle partition count carefully
- apply watermarks to limit memory consumption