[544] Networking

Tyler Caraza-Harter

Learning Objectives

- explain how MAC addresses, IP addresses, and port numbers provide addressing, used to facilitate communicate between processes on different machines
- select IP addresses correctly for binding and using in a browser to achieve connection in the context of a server running behind a NAT
- identify the port number being used by a process
- select between transport methods (TCP and UDP) based on the functionality needed (on top of IP functionality)

Outline

Networks

Internets and "The Internet"

Transport Protocols

Network Interface Controllers and MAC Addresses

NICs can connect a computer to different physical mediums, such as:

- Ethernet (wired)
- Wi-Fi (wireless)

Every NIC in the world has a unique MAC (media access control) address

- 28 trillion possible addrs
- some devices randomly change their MAC addr for privacy

ip address

trh@instance-20240903-151711:~\$ ip address 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default glen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host noprefixroute

valid_lft forever preferred_lft forever

2: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1460 qdisc mq state UP group de ault glen 1000

link/ether 42:01:0a:80:00:04 brd ff:ff:ff:ff:ff:ff

interface

altname enp0s4 MAC address inet 10.128.0.4/32 metric 100 scope global dynamic ens4 valid lft 1870sec preferred lft 1870sec inet6 fe80::4001:aff:fe80:4/64 scope link valid_lft forever preferred_lft forever

Virtual Interfaces

trh@instance-20240903-151711:~\$ ip address

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host noprefixroute valid_lft forever preferred_lft forever 2: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1460 qdisc mq state UP group default qlen 1000 link/ether 42:01:0a:80:00:04 brd ff:ff:ff:ff:ff: altname enp0s4 inet 10.128.0.4/32 metric 100 scope global dynamic ens4 valid_lft 1870sec preferred_lft 1870sec inet6 fe80::4001:aff:fe80:4/64 scope link valid_lft forever preferred_lft forever

loopback (lo) device a virtual interface (not actual hardware) connecting to a mini network containing just your computer

Google Console: Adding Interfaces (NICs)

Create Instance > Advanced Options > Networking

Network interfaces @

Network interface is permanent

default default (10.128.0.0/20)	~
other-net subnet (10.0.0/24)	~
ADD NETWORK INTERFACE	

Virtual Machine Summary

	instance-	US-	10.128.0.37	34.29.220.248
	<u>2</u>	central1-	(<u>nic0</u>)	(<u>nic0</u>)
		а	10.0.0.2	35.202.74.234
			(<u>nic1</u>)	(<u>nic1</u>)
·				

Google Console: Adding Interfaces

Create Instance > Advanced Options > Networking

Networks

A network has nodes that send bytes to other nodes **by MAC address**

- **nodes**: computer, switch, etc
- direct, or **forwarded by switches**
- whole network uses same physical tech (Wi-Fi, Ethernet, etc)

Networks

Computers can have multiple NICs

- can be on multiple networks • (2 ethernets, ethernet+Wi-Fl, etc)
- can't send to a MAC addr in another network without a NIC there

Outline

Networks

Internets and "The Internet"

Transport Protocols

Packet Forwarding

Packets (some bytes with an address and other info) can be forwarded along a path from point A to point B

- routers contain forwarding tables that help them decide which direction to send along a packet
- those tables would be too big if a router had to know where every MAC address existed in the Internet

Node A

(computer)

Node

(router)

Internet Protocol

IP addresses are used to send packets across an internet

- example: 34.29.237.29 (domains can map to IP addrs)
- there are about 4 billion possible IP addresses (IPv4)
- IPv6 (less used) are 4x longer
- forwarding tables only need to know which way to send for a given network number

15

Node

(router)

Listening on an Interface

all of them: python3 -m http.server --bind 0.0.0.0

Private Networks

Challenges

- we don't have enough IPv4 addresses
- we don't want every machine to be able to receive packets from anywhere

Private ranges:

- 192.168.0.0 to 192.168.255.255
- 172.16.0.0 to 172.31.255.255
- 10.0.0.0 to 10.255.255.255

these can be divided into "sub networks" (subnets) to create different networks in a bigger org

Private networks allow duplicates and unreachable machines

Private Networks

- 192.168.0.0 to 192.168.255.255
- 172.16.0.0 to 172.31.255.255
- 10.0.0 to 10.255.255.255

http://10.0.1.2:... won't work in web browser!

Private networks allow duplicates and unreachable machines

Network Address Translation

Google Console (view NAT config)

Status	Name 🕇	Internal IP	External IP
	instance- 1	10.128.0.36 (<u>nic0</u>)	34.29.237.29 (<u>nic0</u>)
	instance- 2	10.0.1.2 (<u>nic0</u>) 10.0.3.2 (<u>nic1</u>)	35.202.74.234 (<u>nic0</u>) 34.29.220.248 (<u>nic1</u>)

Network Address Translation

Google Console (view NAT config)

Status	Name 🕇	Internal IP	External IP
	instance- 1	10.128.0.36 (<u>nic0</u>)	34.29.237.29 (<u>nic0</u>)
	instance- 2	10.0.1.2 (<u>nic0</u>) 10.0.3.2 (<u>nic1</u>)	35.202.74.234 (<u>nic0</u>) 34.29.220.248 (<u>nic1</u>)

Network Address Translation

Outline

Networks

Internets and "The Internet"

Transport Protocols

Port Numbers

Computers might be running multiple processes using the network

- IP address => which NIC?
- Port number => which process?

trh@instance-2:~\$ python3 -m http.server --directory=A --bind 10.0.1.2 8000 &
[1] 13502
Serving HTTP on 10.0.1.2 port 8000 (http://10.0.1.2:8000/) ...

trh@instance-2:~\$ python3 -m http.server --directory=B --bind 10.0.1.2 9000 &
[2] 13503
Serving HTTP on 10.0.1.2 port 9000 (http://10.0.1.2:9000/) ...

Transport Protocols

Most common

- UDP (User Datagram Protocol)
- TCP (Transmission Control Protocol)

BOTH build on IP networking and BOTH provide port numbers

-t: tcp, -u: udp trh@instance-2:~/temp\$ sudo ss -tlpn Process State Local Address:Port Peer Address:Port users:(("python3",...)) LISTEN 10.128.0.4:8000 0.0.0.0:* users:(("python3",...)) LISTEN 10.128.0.4:9000 0.0.0.0:* LISTEN *:22 **

Reliability: UDP vs. TCP

Packets may be

- dropped
- reordered
- split

TCP saves+reassembles packets in order to provide original message (when possible). For packet drops, it retries. We'll mostly use TCP.

UDP doesn't do this extra work. Why ever use UDP?

Network Stack: Common Implementations

Network applications (like most complex systems) are not built as one single system. Layers are built upon other layers to provide additional functionality.