
[544] gRPC
Tyler Caraza-Harter



Learning Objectives

• describe the functionality that HTTP provides (beyond what 
TCP alone provides)

• call functions remotely via gRPC



Outline
HTTP

gRPC



HTTP (Hypertext Transfer Protocol)

Ethernet or Wi-Fi

Internet Protocol

TCP or UDP

HTTP

MAC addresses

IP addresses

IP addresses + ports

URL (domain/IP + port + resource)

https://tyler.caraza-harter.com:443/cs544/f24/schedule.html

domain name
(mapped to an IP)

port
(443 is default

for https)

resource



HTTP Messages Betwen Clients and Servers

request
response

client server

client
JupyterLab

server

Chrome

https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

Parts: method, resource, status code, headers, body

https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages


HTTP Methods (types of messages)

Types of request
• POST: create a new resource (request+response have body)
• PUT: update a resource (request+response have body, usually)
• GET: fetch a resource (response has body)
• DELETE: delete a resource
• others...

Canvas REST API example:

GET https://canvas.wisc.edu/api/v1/conversations

(see all Canvas conversations in JSON format)

POST https://canvas.wisc.edu/api/v1/conversations

(create new Canvas conversation)

https://canvas.instructure.com/doc/api/conversations.html

https://canvas.wisc.edu/api/v1/conversations
https://canvas.wisc.edu/api/v1/conversations


Outline
HTTP

gRPC



Remote Procedure Calls (RPCs)

def add(x,y):

    return x+y


def main():

    w = add(1,2)

    z = mult(3,4)

computer 1 computer 2

client program
def mult(x,y):

    return x*y


server program

procedure = function
• main calling add is a regular procedure call
• main call mult is a remote procedure call

There are MANY tools to do RPCs
• Thrift (developed at Meta)
• gRPC (developed at Google) -- this semester

goal: client and server could be in 
different languages (Python and Java)

why remote?
• server might have faster 

hardware
• server might have access to data 

not directly available to client



Example: increase function

counts = {

   "A": 123, ...

}


def increase(key, amt):

    counts[key] += amt

    return counts[key]


curr = increase("A", 5)

print(curr) # 128

what if we want many programs running 
on different computers to have access to 

this dict and the increase function?



Example: increase function

curr = increase("A", 5)

print(curr) # 128

counts = {

   "A": 123, ...

}


def increase(key, amt):

    counts[key] += amt

    return counts[key]


client server

client

...

move counts and increase to a server 
accessible to many client programs on 

different computers



Example: increase function

def increase(key, amt):

    ...code to send   


curr = increase("A", 5)

print(curr) # 128

def rpc_server():

    ...code to receive


counts = {

   "A": 123, ...

}


def increase(key, amt):

    counts[key] += amt

    return counts[key]


client server

need some extra functions to make calling a remote 
function feel the same as calling a regular one

computer 1 computer 2



Example: increase function

def increase(key, amt):

    ...code to send   


curr = increase("A", 5)

print(curr) # 128

def rpc_server():

    ...code to receive


counts = {

   "A": 123, ...

}


def increase(key, amt):

    counts[key] += amt

    return counts[key]


client serverrequest

message

response

message

computer 1 computer 2



Serialization/Deserialization

def increase(key, amt):

    ...code to send   


curr = increase("A", 5)

print(curr) # 128

def rpc_server():

    ...code to receive


counts = {

   "A": 123, ...

}


def increase(key, amt):

    counts[key] += amt

    return counts[key]


client server

request

message

response

message

computer 1 computer 2

args somehow encoded as bytes:

b'{"key": "A"

   "amt": 5}'

return val as bytes:

b'5'

serialize deserialize

serializedeserialize

Serialization/deserialization converts to/from bytes.  Could be JSON.  gRPC uses protocol buffers



gRPC builds on HTTP

Ethernet or Wi-Fi

Internet Protocol

TCP or UDP

HTTP

MAC addresses

IP addresses

IP addresses + ports

URL (domain/IP + port + resource)

gRPC Methods

client server
HTTP POST request

BODY: arguments (3, 4)

HTTP response
BODY: return value (12)

multi(3, 4) def mult(x,y):
    return x*y



Serialization/deserialization (Protobufs)
How do we represent arguments and return values as bytes in a request/response body?

Serialization: various types (ints, strs, lists, etc) to bytes ("wire format")
Deserialization: bytes to various types

Challenge 1: every language has different 
types and we want cross-languages calls

gRPC uses Google's  Protocol Buffers provide a
uniform type system across languages.

Challenge 2: different CPUs order 
bytes differently

.proto 
Type

C++ 
Type

Java 
Type

Python 
Type[2]double double double float

float float float float
int32 int32 int int
int64 int64 long int
uint32 uint32 int int
uint64 uint64 long int
sint32 int32 int int
sint64 int64 long int
bool bool boolean bool
string string String str
bytes string ByteString bytes

cpu A int32: byte 1 byte 2 byte 3 byte 4

cpu B int32: byte 4 byte 3 byte 2 byte 1

https://protobuf.dev/programming-guides/proto/Equivalent with digit order: "twelve" is "12" by convention,
but people could have chosen "21" to mean "twelve"



Variable-Length Encoding

0 0 0 ? 0 0 ? ?

int32: int32:

+

0 ? ? ?
int32:

For computational efficiency, int32's use 4 bytes during computation.  Also helps w/ offsets.

For space efficiency, smaller numbers in int32s could user fewer bytes (4 bytes is max).
This reduces network traffic.

Example nums in a protobuf:

? ? ? ? ? ? ? ?

int32 int64 int32

x y z



Demos...


