[544] gRPC

Tyler Caraza-Harter



Learning Objectives

» describe the functionality that HT TP provides (beyond what
TCP alone provides)

» call functions remotely via gRPC



Outline

HTTP

gRPC



HTTP (Hypertext Transfer Protocol)

HTTP

URL (domain/IP + port + resource)

IP addresses + ports

TCP or UDP

Internet Protocol IP addresses

PR
PR
PR
PR

Ethernet or Wi-Fi MAC addresses

https://tyler.caraza-harter.com:443/csb544/£24/schedule.html

domain name port resource
(mapped to an IP) (443 is default
for https)



HTTP Messages Betwen Clients and Servers

client server

request

response JupyterLab

Parts: method, resource, status code, headers, body

Reqguests Responses
start- :
POST / HTTP/1.1 41— e ™ HTTP/1.1 403 Forbidden

Host: Zocalhost:8000 Server: Apache

User-Agent: Mcozi11la/5.0 (Macintosh;.. }).. Firefox/51.0 Content-Type: text/html; ¢ h araet=130-8859-1
Accept: text/html,applicaticn/xhtml+xml,.., */*;q Date: Wed, 10 Aug 2016 09:23:25 CGMT

Accept-lLanguage: en-US,en;g=0.5 Keep-Alive: timeout=3, max=1000

HTTP headers

Accept-Enceding: gzip, deflate onnectic Keep-Alive
Connecticn: Xkeep-allive Bge 3464
Upgrade-Insecure-Re ~qur sts: 1 Date: Wed, 10 Aug 2016 09:46:25 CGMT

Content-Type: multipart/form-data; boundary=-126565974 X-Cache-Info: caching

Content-Length: 3245 empty Content-Length:

-12656974 : i <IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML

(more data) <— body—P 2.0//EN">
(more data)

https://developermozilla.org/en-US/docs/Web/HT TP/Messages


https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

HTTP Methods (types of messages)

Types of request
* POST.: create a new resource (request+response have body)
 PUT: update a resource (request+response have body, usually)
 GET:fetch a resource (response has body)

 DELETE: delete a resource
e others..

Canvas REST APl example:

GET https://canvas.wisc.edu/api/vl/conversations

(see all Canvas conversations in [SON format)

POST https://canvas.wisc.edu/api/vl/conversations

(create new Canvas conversation)

https://canvas.instructure.com/doc/api/conversations.ntml


https://canvas.wisc.edu/api/v1/conversations
https://canvas.wisc.edu/api/v1/conversations

Outline

HTTP

oRPC



Remote Procedure Calls (RPCs)

computer | computer 2
client program server program
def add(x,vy): def mult(x,v):
return x+y / return x*y
e

def main () :
w = add (1, 2)

7 = mult(3,4)T/

goal: client and server could be Iin
different languages (Python and Java)

procedure = function why remote!?

* main calling add is a regular procedure call * server might have faster

 main call mult is a remote procedure call hardware

* server might have access to data

There are MANY tools t6 do RPCs not directly available to client

* Thnft (developed at Meta)
* gRPC (developed at Google) -- this semester



Example: increase function

counts = {
"A": 123,
}

def increase (key, amt):
countsl[key] += amt
return counts|key]

curr = 1ncrease ("A", 5)
print (curr) # 128




Example: increase function

client server
counts = {
"A": 123,

}

def increase (key, amt) :
curr = 1ncrease ("A", D) countsl[key] += amt
print (curr) # 128 return counts[key]

client




Example: increase function

client

def increase (key, amt):

...code to send

curr = 1ncrease ("A", 5)
print (curr) # 128

Server

computer |

def rpc server():
...code to receive

counts = {
"A": 123,
}

def increase (key, amt) :
counts[key] += amt
return counts/[key]

computer 2




Example: increase function

client

def increase (key,
...code tolsend

curr = 1ncrease ("A",
print (curr) # 128

amt) :

o)

computer |

response
message

server

def rpc server():

counts
"A" :
}

counts [ key]

return counts/[key]

...code to receive

def increase (key,

amt) :
+= amt

computer 2




Serialization/Deserialization

client server

serialize deserialize 3¢T rPc_server () : ,
- ...code to receive

def increase (key, amt)
...code tolsend

serialize
counts = {

"A": 123,

deserialize

}

def increase (key, amt) :
curr = 1ncrease ("A", D) countsl[key] += amt

print (curr) # 128 return counts[key]

computer | computer 2
response
message
args somehow encoded as bytes: return val as bytes:

b'{"key": LN b'5"
"amt " 5}!




gRPC builds on HTTP

oRPC Methods
HT TP URL (domain/IP + port + resource)
TCP or UDP IP addresses + ports

Internet Protocol IP addresses

244414

Ethernet or Wi-Fi MAC addresses

client server
HTTP POST request

BODY: arguments (3, 4)

—» def mult(x,y):

multi(3, 4) eturn x*y

HT TP response
BODY: return value (12)




Serialization/deserialization (Protobufs)

How do we represent arguments and return values as bytes in a request/response body?

:various types (ints, strs, lists, etc) to bytes ("wire format")

: bytes to various types

Challenge |:every language has different
types and we want cross-languages calls

gRPC uses Google's provide a
uniform type system across languages.

Challenge 2: different CPUs order
bytes differently

cpu A int32: |byte | | byte 2 | byte 3 | byte 4

cpu B int32: | byte 4 [ byte 3| byte 2| byte |

Equivalent with digit order: "twelve" is "1 2" by convention,
but people could have chosen "2 1" to mean "twelve"

.proto
double
float
Int32
Int64
uint32
uinte4
sint32
sint64
bool
string
bytes

C++

double

float
Int32
Int64
uint32
uinte4
INt32
iInt64
bool
string
string

Java Python
double float
float float

int int

long int

int int

long int

int int

long int

boolean bool
String str
ByteString bytes

https://protobuf.dev/programming-guides/proto/



Variable-Length Encoding

int32:
o | o | o | 2

For computational efficiency, int32's use 4 bytes during computation. Also helps w/ offsets.

For space efficiency, smaller numbers in int32s could user fewer bytes (4 bytes is max).
This reduces network traffic.

Example nums in a protobuf:

, , , , , , , ,

iNt32 iINt64 iNt32



Demos...



