[544] Caching and PyArrow

Tyler Caraza-Harter

Learning Objectives

- write cache-friendly code with Numpy and PyArrow
- use memory mappings via PyArrow to access data that is larger than physical memory
- enable swapping to alleviate memory pressure
- configure Docker memory limits on physical memory used

Outline

CPU: LI-L3

Demos: Numpy+PyArrow...

Background: Virtual Address Spaces

OS (Operating System): Page Cache

Demos: PyArrow+Docker

Granularity

If a process reads I byte and misses, how much data should the CPU bring into the cache?

- too little: we'll have many more misses if we read nearby bytes soon
- too much: wasteful to load data to cache that might never be accessed

LI-L3 cache data in units called cache lines

- modern CPUs typically 64 bytes (for example, 8 int64 numbers)
- MI/M2 uses 128

Cache Lines and Misses

Example 1: Step and Multiply

as K gets bigger, we do fewer multiplications. But does it matter?

for (int i = 0; i < arr.Length; i += K) arr[i] *= 3;</pre>

<u>Gallery of Processor Cache Effects</u> http://igoro.com/archive/gallery-of-processor-cache-effects/

Example 2: Matrices

matrix of numbers **logically**, 2-dimensional

row
row
row
row

physically, those rows are arranged along I-dimension in the virtual address space

	code	row	row	row	row	 stack	
0						Ν	1
			virtual add	ress			
			spaces				

Example 2: Matrices

matrix of numbers **logically**, 2-dimensional

row
row
row
row

summing over row: data consolidated over few cache lines

summing over column: each number is in its own cache line and triggers a cache miss

Numpy: Controlling Layout with Transpose

for efficiency, transpose doesn't actually move/copy data, meaning we can get fast column sum by (a) putting column data in rows and (b) transposing

any calculations on the two tensors will produce the same results, but they'll each be faster for different access patterns!

Example 3: Ordered Collections of Strings

which layout is most cache friendly?

Example 3: Ordered Collections of Strings

how to tell the end of one string from the start of the next? how to jump immediately to string at index i? how support null/None?

PyArrow String Array Data Structure

https://www.packtpub.com/product/in-memory-analytics-with-apache-arrow/9781801071031

Outline

CPU: LI-L3

Demos: Numpy+PyArrow...

Background: Virtual Address Spaces

OS (Operating System): Page Cache

Demos: PyArrow+Docker

Outline

CPU: LI-L3

Demos: Numpy+PyArrow...

Background: Virtual Address Spaces

OS (Operating System): Page Cache

Demos: PyArrow+Docker

Processes and Address Spaces

Address spaces

- A process is a running program
- Each process has it's own virtual address space
- The same virtual address generally refers to different memory in different processes
- Regular processes cannot directly access physical memory or other addr spaces

Processes and Address Spaces

Address spaces

- A process is a running program
- Each process has it's own virtual address space
- The same virtual address generally refers to different memory in different processes
- Regular processes cannot directly access physical memory or other addr spaces
- Address spaces can have holes (N is usually MUCH bigger than M)
- Physical memory for a process need not be contiguous

What goes in an address space?

https://pythontutor.com/

What goes in an address space?

Note: code and heap generally not contiguous

What goes in an address space?

CPUs

- CPUs are attached to at most one instruction pointer at any given time
- they run code by executing instructions and advancing the instruction pointer
- Note: interpreter left out for simplicity (CPU points to interpreter code, which points to Python bytecode)

CPUs

- CPUs are attached to at most one instruction pointer at any given time
- they run code by executing instructions and advancing the instruction pointer
- Note: interpreter left out for simplicity (CPU points to interpreter code, which points to Python bytecode)

CPUs

- CPUs are attached to at most one instruction pointer at any given time
- they run code by executing instructions and advancing the instruction pointer
- Note: interpreter left out for simplicity (CPU points to interpreter code, which points to Python bytecode)

Outline

CPU: LI-L3

Demos: Numpy+PyArrow...

Background: Virtual Address Spaces

OS (Operating System): Page Cache

Demos: PyArrow+Docker

mmap (Memory Map)

- anonymous
- backed by a file

Anonymous mmap

- Python (and other language runtimes) will mmap some anonymous memory when they need more heap space
- this will be used for Python objects (ints, lists, dicts, DataFrames, etc.)

- anonymous
- backed by a file

- anonymous
- backed by a file

- anonymous
- backed by a file

An mmap call can add new regions to a virtual address space. Two varities:

- anonymous
- backed by a file

- **virtual** memory used: 9*pagesize = 36 KB
- **physical** memory used: 7*pagesize = 28 KB

somefile.txt

An mmap call can add new regions to a virtual address space. Two varities:

- anonymous
- backed by a file

• data loaded for accesses to file-backed mmap regions are part of the "page cache"

- anonymous
- backed by a file

- data loaded for accesses to file-backed mmap regions are part of the "page cache"
- it works like a cache because there is another copy on disk, so we can evict under memory pressure

Swap Space

- anonymous
- backed by a file

Swap Space

An mmap call can add new regions to a virtual address space. Two varities:

- anonymous
- backed by a file

• we can create same space (a swap file) to which the OS can evict data from anonymous mappings

Swap Space

- anonymous
- backed by a file

- we can create same space (a swap file) to which the OS can evict data from anonymous mappings
- of course, if we access these virtual addresses again, it will be slow to bring the data back

Outline

CPU: LI-L3

Demos: Numpy+PyArrow...

Background: Virtual Address Spaces

OS (Operating System): Page Cache

Demos: PyArrow+Docker