
[544] BigQuery
Cost Management

Tyler Caraza-Harter

Learning Objectives

• describe the relationship between BigQueries two billing
models (capacity and on-demand)

• manage and inspect BigQuery costs

Outline
Billing Models

Optimization

Resources

Colossus

one region

...

• Query engine: Dremel running on many servers with lots of CPU+RAM
• Storage engine: Capacitor files in Colossus file system 

(not clear if Dremel+Colossus servers are co-located on same machines)

other regions...

lots
of

servers

zone A zone B

Resources

Colossus

one region

...

Resources
• compute/memory
• Colossus storage
• Colossus I/O

other regions...

lots
of

servers

zone A zone B

capacity billing
on-demand billing

BigQuery Slots

Colossus

one region

• the compute and memory resources of the servers are broken down into
a pool of "slots"

• a slot has approximately ½ cores and 1 GB of RAM
• if newer servers get added with faster CPUs or different core/memory

ratios, the exact resources can change a bit

other regions...

pool
of

slots

Billing Model 1: Capacity Pricing (compute based)

Colossus

one region

• customers can pay a fixed rate for slot capacity (about $0.96 for 1 slot day)
• whether or not they use the slot does not affect the cost
• reservations aren't fixed to one location (execution will ideally happen near the data).
• slightly more expensive than the e2-medium instances we used this semester, which have

2x compute and 4x memory resources (but not free Colossus I/O). But VMs are IaaS and
BigQuery is PaaS.

customer 1: 4 slots
reserved, 2 running

customer 2

Billing Model 1: Capacity Pricing (compute based)

Colossus

one region

Excess capacity cases:
• not reserved
• reserved, but not currently used

Billing Model 2 (On-Demand) draws from this excess...

customer 1: 4 slots
reserved, 2 running

customer 2

Billing Model 2: On-Demand Pricing (I/O based)

Colossus

one region

Pricing:
• pay for Colossus I/O after free tier (about $6.25/TB)
• slots (compute/memory) are free
• use whatever is left over from capacity-based usage (up to 2000 slots!)
• preemptible: a task running in a slot can be interrupted (if a reservation is suddenly

needed or new on-demand jobs start -- want to share capacity between these fairly)

customer 1: 4 slots
reserved, 2 running

customer 2

Billing Model 2: On-Demand Pricing (I/O based)

Colossus

one region

Pricing:
• pay for Colossus I/O after free tier (about $6.25/TB)
• slots (compute/memory) is complementary
• use whatever is left over from capacity-based usage (up to 2000 slots!)
• preemptible: a task running in a slot can be interrupted (if a reservation is suddenly

needed or new on-demand jobs start -- want to share capacity between these fairly)

customer 1: 4 slots
reserved, 2 running

customer 2

BigQuery tasks are atomic and idempotent so we have
exactly-once semantics. Don't want interrupted and

restarted tasks to cause duplicate results.

Comparison
Capacity Billing

• very predictable costs
• very predictable performance (other customers don't affect you)
• discounts if commit to buying lots of cores for a long time (e.g., a year)
• pay when using nothing
• can't use lots of resources for a short while

On-Demand Billing
• pay-as-you-go: use nothing, pay nothing
• if resources are available, you can use 1000 cores at once -- very fast!
• how to make sure you don't accidentally spend more than intended?

Estimating/Capping On-Demand Costs

Options:
• Limit per day: 

https://console.cloud.google.com/iam-admin/quotas

• Estimate before run: 
job_config=bigquery.QueryJobConfig(dry_run=True)

• Set max per query: 
bigquery.QueryJobConfig(maximum_bytes_billed=200*1024**2)

• See most expensive queries: 
cs320-f21.region-us.INFORMATION_SCHEMA.JOBS_BY_PROJECT

https://console.cloud.google.com/iam-admin/quotas

Demos

Outline
Billing Models

Optimization

Partitioning
A B C D

5/1/23 1 2 3

5/1/23 4 5 6

5/2/23 7 8 9

5/2/23 10 11 12

A B C D
5/1/23 1 2 3

5/1/23 4 5 6

A B C D
5/2/23 7 8 9

5/2/23 10 11 12

• each unique value in a partition column corresponds to a partition (basically
a mini table)

• WHERE filters can limit which mini tables need to be read (saving I/O cost)
• limited options for types (e.g., ints, dates)
• only works well when substantial data per partition

Clustering
A B C D

5/1/23 1 2 3

5/1/23 4 5 6

5/2/23 7 8 9

5/2/23 10 11 12

• semi sorted: sub files are non overlapping on cluster key, but no order within file
• all types, combinations of columns possible
• some queries will be cheaper because they can look at subset of files

A B C D
5/1/23 1 2 3

A B C D
5/2/23 7 8 9

5/1/23 4 5 6

A B C D
5/2/23 10 11 12

B range: 1 to 1 B range: 10 to 10

B range: 4 to 7

Clustering
A B C D

5/1/23 1 2 3

5/1/23 4 5 6

5/2/23 7 8 9

5/2/23 10 11 12

• some min ratio of data is clustered
• don't want few new rows to force total reorg

A B C D
5/1/23 1 2 3

A B C D
5/2/23 7 8 9

5/1/23 4 5 6

A B C D
5/2/23 10 11 12

B range: 1 to 1 B range: 10 to 10

B range: 4 to 7

A B C D
5/2/23 5 1 2

5/1/23 12 3 4

clustered

unclustered

Demos

