
[320] Welcome + First Lecture

Yiyin Shen

[reproducibility]

Who am I?

Yiyin Shen
•CS PhD student
•Email: yshen82@wisc.edu

Research Interest
•CS Education
•Large Language Models

Teaching Experience
•CS320 TA => Head TA => Instructor
•CS220, CS402 Guest Lectures

Who are You?

Year in school?
Major?

Please fill out the Student Information form:
(due Wed, June 7th):
https://forms.gle/bSGCkxBW7MPGGeHQ6
Why?
• Help me get to know you
• Get survey credit
• Group formation

https://forms.gle/bSGCkxBW7MPGGeHQ6

CS 320

CS 220

STAT 340

STAT 240

Related courses

L I S 461

Upper Level Data ScienceUpper Level Computer Science

CS 354

CS 252

CS 300

CS 200

CS 400

systems
(C)

programming
(Java)

data programming
(Python)

data modeling
(R)

ethics

P1 (Project 1) will help 300-to-320 students pickup Python.

Welcome to Data Science Programming II!
Builds on CS220. https://stat.wisc.edu/undergraduate-data-science-studies/

CS220 CS320

writing correct code writing efficient code
using objects designing new types of objects

lists + dicts graphs + trees
analyzing datasets collecting + analyzing datasets

getting results getting reproducible results

plots visualizations

functions: f(obj) methods: obj.f()

tabular analysis simple machine learning

CS220 content (for review): https://cs220.cs.wisc.edu/f22/schedule.html

https://stat.wisc.edu/undergraduate-data-science-studies/
https://cs220.cs.wisc.edu/f22/schedule.html

Course Logistics

Course Website

https://tyler.caraza-harter.com/yiyin/su23/schedule.html

I'll also use Canvas for:
• Announcements
• Quizzes/exams
• Zoom: lectures, labs, office hours
• Late day summaries
• Grades

read syllabus and
where to get help

pages carefully

https://tyler.caraza-harter.com/cs320/f22/schedule.html

Class Organization: People

Groups

• you'll be assigned to a group of 4-7 students
• groups will last the whole semester
• collaboration with group members are allowed (not required)

on labs, quizzes, and group part of the projects
• collaboration with non-group members is not allowed

Communication

Drop-in Office Hours:
• Course website – Get Help – Office Hour Calendar
• Queue: https://ohwl.herokuapp.com/

Piazza
• Don't post >5 lines of project-related code (considered cheating)
• Private posts disabled

Forms
• https://tyler.caraza-harter.com/yiyin/su23/surveys.html
• Student Information Survey, Exam Conflicts Forms, Project/Lab

Grading Issue Form, Feedback Form, Thank You Form
Email (least preferred)
• me: yshen82@wisc.edu
• TA: Victor vsuciu@wisc.edu
• Course staff: https://canvas.wisc.edu/courses/355770/pages/course-staff

https://ohwl.herokuapp.com/
https://tyler.caraza-harter.com/yiyin/su23/surveys.html
mailto:yshen82@wisc.edu
mailto:vsuciu@wisc.edu
https://canvas.wisc.edu/courses/355770/pages/course-staff

Scheduled Activities
Lectures (MTWR 10:00 – 10:50 AM) (2% overall)

• Recommendation: use your laptop to take notes on the provided template notebook
and another screen to follow along the lecture

• Attendance is required. Attendance recorded through Google forms
• 14 drops out of 38 lectures

Labs (TR 11:00 – 11:50 AM) (4% overall)

• Work through lab activities with group mates
• 320 staff will circulate around breakout rooms to answer questions
• Attendance is required. 6 drops out of 18 labs
• 5 attendance points per lab:
• 2 for arriving no later than 5 mins after the lab starts

• 3 for showing sufficient working progress (submit code and/or running results to
Canvas at the end of the lab)

Graded Work: Quizzes & Exams
Eight Online Quizzes - 1% each (1 drop, 7% overall)
• cumulative, no time limit
• on Canvas, open book/notes
• can take together AT THE SAME TIME with group members

(no help from other human is allowed)
Midterms - 11% each (22% overall)
• cumulative, individual, multi-choice, 50 minutes
• one-page two-sided note sheet
• Friday, June 30th, 7:00PM - 8:30PM
• Friday, July 21st, 7:00PM - 8:30PM

Final - 15%
• cumulative, individual, multi-choice, 2 hours
• two-page two-sided note sheet
• Thursday, August 10th, 10:00AM - 12:30PM

Graded Work: Projects & Surveys
7 Projects - 7% each (49% overall)
• format: python notebook or module
• group part: you can optionally collaborate with group
• individual part: must be done individually (only receive help

from 320 staff)
• regular deadlines on course website
• late days: overall 8 late days
• hard deadline: 4 days after the regular deadline – maximum 2

late days; 10% score penalty per day after day 2
• tester.py with TA evaluation
• clearing auto-grader on the submission portal (course

website) is mandatory
Surveys (1% overall)

Letter Grades

• 93% - 100%: A
• 88% - 92.99%: AB
• 80% - 87.99%: B
• 75% - 79.99%: BC
• 70% - 74.99%: C
• 60% - 69.99%: D

Grade cut-offs

• Your final grade is based on sum of all points earned
• Your grade does not depend on other students' grade
• Scores will NOT be rounded up at the end of the semester
• No major score changes at the end of the semester
• No extra credits

Time Commitment & Academic Conduct

Project commitment
• 10-12 hours per project is typical (2-4 hours can be done in labs)
• 20% of students sometimes spend 20+ hours on some projects
• recommendation: start early and be proactive

Typical Weekly Expectations
• 6 hours - lecture/lab
• 8 hours - project coding
• 2 hours - reading/quizzes/etc

Academic Conduct
• Read syllabus to make sure you know what is and isn’t

acceptable.
• We will run plagiarism detector on project submissions.

Please talk to me if you're
feeling overwhelmed with 320
or your semester in general.

Reading: same as 220/301 and some others...

I'll post links to other online articles and notes

Lectures don't assume any reading prior to class

Tips for 320 Success

1. Just show up
 Get 100% on attendance, don't miss quizzes, submit group work

2. Use office hours

3. Do labs before projects

4. Take the lead on group collaboration

5. Learn debugging

6. Run the tester often

7. If you're struggling, reach out -- the sooner, the better

Today's Lecture:
Reproducibility

Discuss: how might we define "reproducibility" for a data scientist?

Big question: will my program run on someone else's computer?
 (not necessarily written in Python)

Things to match:

1 Hardware

2 Operating System

3 Dependencies next lecture

CPU

next lecture

Hardware: Mental Model of Process Memory

Imagine...
• one huge list, per each running program process, called "address

space"
• every entry in the list is an integer between 0 and 255 (aka a "byte")

indexes (aka "addresses")

values (bytes)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

Is this really all we have for state?

...

data

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

the [3,20] list starts at index address 8 in the giant list

the [11,22,33] list starts at address 12 in the giant list

...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 22 33 44 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

We'll think more rigorously about
performance in CS 320 (big-O notation)

0 0 0 8 0 8 0 0 3 20 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

PythonTutor's visualization

the x variable is at address 3

the y variable is at address 5

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

Is this really all we have for state?

...

discuss: how?

0 0 0 0 0 0 0 0 0 0 0 0 0 67 65 66

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

???

encoding:

code
65
66
67
68
...

letter
A
B
C
D
...f = open("file.txt", encoding="utf-8")

...

0 0 0 0 0 0 0 0 0 0 0 0 0 67 65 66

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

"CAB"

code
65
66
67
68
...

letter
A
B
C
D
...

encoding:

f = open("file.txt", encoding="utf-8")

...

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

code
5
8
33
...

operation
ADD
SUB
JUMP

...

i = 0
while ????:
 i += 2
 # what line next?

Instruction Set

...

operator
operands

0 0 0 0 0 0 0 5 4 2 33 0100

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...0 0 0 0 0 0 0 5 4 2 33 010... ...0

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

add 2 to variable

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...0 0 0 0 0 0 0 5 4 2 33 010... ...2

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

go back to top of loop

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...0 0 0 0 0 0 0 5 4 2 33 010... ...2

0 0 0 0 0 0 0 5 4 2 33 0

0 71 82 103 124 135 146 159 11

Instruction Set

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

...102

0 71 82 103 124 135 146 159 11

Instruction Set

for CPU X

code
5
8
33
...

operation
ADD
SUB
JUMP

...

Hardware: Mental Model of CPU

Instruction Set

for CPU Y

code
5
8
33
...

operation
SUB
ADD

undefined
...

discuss: what would happen if a
CPU tried to execute an

instruction for a different CPU?

...0 0 0 0 0 0 0 5 4 2 33 010... ...0

0 71 82 103 124 135 146 159 11

Instruction Set

for CPU X

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU Y

Hardware: Mental Model of CPU

Instruction Set

for CPU Y

code
5
8
33
...

operation
SUB
ADD

undefined
...

a CPU can only run programs that
use instructions it understands!

...0 0 0 0 0 0 0 5 4 2 33 010... ...0

A Program and CPU need to "fit"

CPU Y

Program B

CPU X

Program A

CPU Y

Program B

CPU X

Program A

A Program and CPU need to "fit"

CPU X

Program A

CPU Y

Program B

why haven't we noticed this yet
for our Python programs?

Interpreters

CPU X

python.exe (X)

CPU Y

python.exe (Y)

program.py program.py
same

different

different

Interpreters (such as python.exe) make it easier to run the same code on different machines

A compiler is another tool for running the same code on different CPUs

python code

machine code

Interpreters

CPU X

python.exe (X)

CPU Y

python.exe (Y)

program.py program.py
same

different

different

Interpreters (such as python.exe) make it easier to run the same code on different machines

python code

machine code

Discuss: if all CPUs had the instruction set,
would we still need a Python interpreter?

1 Hardware

2 Operating System

3 Dependencies

[this semester]

many others...

Big question: will my program run on someone else's computer?
 (not necessarily written in Python)

Things to match:

OS jobs: Allocate and Abstract Resources

1 Allocation 2 Abstraction

Operating System

f = open("file.txt")
data = f.read()
f.close()

ignorant of
files/directories

inconvenient

convenient

CPU X

Process A

Process B

Process Z

...waiting

running

only one process can run on CPU at a time
(or a few things if the CPU has multiple "cores")

OS decides

[like CPU, hard drive, etc]

Harder to reproduce on different OS...

CPU X

bad.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

f = open("/data/file.txt")
...

Harder to reproduce on different OS...

CPU X

good.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

f = open("c:\data\file.txt")
...

Harder to reproduce on different OS...

CPU X

good.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

solution 1:
f = open(os.path.join("data", "file.txt"))
...

solution 2:
tell anybody reproducing your results to use the same OS!

tradeoffs?

VMs (Virtual Machines) popular virtual
machine software

Physical Machine
[CPU, memory, etc]

Mac Operating System

Virtual Machine Virtual Machine

Mac OS X
Programs

programs

Linux OS Windows OS

programs programs

With the right virtual machines created and operating systems installed, you could
run programs for Mac, Linux, and Windows -- at the same time without

rebooting!

The Cloud
popular cloud providers

cloud providers let you rent VMs
in the cloud on hourly basis

(e.g., $15 / month)

VM VM VM VM

ssh session>

remote
connection

we'll use GCP virtual
machines this semester

[setup in lab]

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

ssh user@best-linux.cs.wisc.edu
run in

PowerShell/bash to
access CS lab

Linux
here

Windows, Mac,
whatever

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

Big question: will my program run on someone else's computer?

Things to match:

1 Hardware

2 Operating System

3 Dependencies

Lecture Recap: Reproducibility

we'll use Ubuntu Linux on
virtual machines in the cloud

a program must fit the CPU;
python.exe will do this, so
program.py won't have to

next time: versioning

Recap of 15 new terms
reproducibility: others can run our analysis code and get same results
process: a running program
byte: integer between 0 and 255
address space: a big "list" of bytes, per process, for all state
address: index in the big list
encoding: pairing of letters characters with numeric codes
CPU: chip that executes instructions, tracks position in code
instruction set: pairing of CPU instructions/ops with numeric codes
operating system: software that allocates+abstracts resources
resource: time on CPU, space in memory, space on SSD, etc
allocation: the giving of a resource to a process
abstraction: hiding inconvenient details with something easier to use
virtual machine: "fake" machine running on real physical machine
virtual machine: allows us to run additional operating systems
cloud: place where you can rent virtual machines and other services
ssh: secure shell -- tool that lets you remotely access another machine

