
[320] Reproducibility 2

Yiyin Shen

Discuss: how might we define "reproducibility" for a data scientist?

Big question: will my program run on someone else's computer?
 (not necessarily written in Python)

Things to match:

1 Hardware

2 Operating System

3 Dependencies

CPU

Hardware: Mental Model of Process Memory

Imagine...
• one huge list, per each running program process, called "address

space"
• every entry in the list is an integer between 0 and 255 (aka a "byte")

indexes (aka "addresses")

values (bytes)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

Is this really all we have for state?

...

data

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

the [3,20] list starts at index address 8 in the giant list

the [11,22,33] list starts at address 12 in the giant list

...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 22 33 44 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

We'll think more rigorously about
performance in CS 320 (big-O notation)

0 0 0 8 0 8 0 0 3 20 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

PythonTutor's visualization

the x variable is at address 3

the y variable is at address 5

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

Is this really all we have for state?

...

discuss: how?

0 0 0 0 0 0 0 0 0 0 0 0 0 67 65 66

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

???

encoding:

code
65
66
67
68
...

letter
A
B
C
D
...f = open("file.txt", encoding="utf-8")

...

0 0 0 0 0 0 0 0 0 0 0 0 0 67 65 66

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

"CAB"

code
65
66
67
68
...

letter
A
B
C
D
...

encoding:

f = open("file.txt", encoding="utf-8")

...

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

code
5
8
33
...

operation
ADD
SUB
JUMP

...

i = 0
while ????:
 i += 2
 # what line next?

Instruction Set

...

operator
operands

0 0 0 0 0 0 0 5 4 2 33 0100

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...0 0 0 0 0 0 0 5 4 2 33 010... ...0

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

add 2 to variable

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...0 0 0 0 0 0 0 5 4 2 33 010... ...2

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

go back to top of loop

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...0 0 0 0 0 0 0 5 4 2 33 010... ...2

0 0 0 0 0 0 0 5 4 2 33 0

0 71 82 103 124 135 146 159 11

Instruction Set

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

...102

0 71 82 103 124 135 146 159 11

Instruction Set

for CPU X

code
5
8
33
...

operation
ADD
SUB
JUMP

...

Hardware: Mental Model of CPU

Instruction Set

for CPU Y

code
5
8
33
...

operation
SUB
ADD

undefined
...

discuss: what would happen if a
CPU tried to execute an

instruction for a different CPU?

...0 0 0 0 0 0 0 5 4 2 33 010... ...0

0 71 82 103 124 135 146 159 11

Instruction Set

for CPU X

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU Y

Hardware: Mental Model of CPU

Instruction Set

for CPU Y

code
5
8
33
...

operation
SUB
ADD

undefined
...

a CPU can only run programs that
use instructions it understands!

...0 0 0 0 0 0 0 5 4 2 33 010... ...0

A Program and CPU need to "fit"

CPU Y

Program B

CPU X

Program A

CPU Y

Program B

CPU X

Program A

A Program and CPU need to "fit"

CPU X

Program A

CPU Y

Program B

why haven't we noticed this yet
for our Python programs?

Interpreters

CPU X

python.exe (X)

CPU Y

python.exe (Y)

program.py program.py
same

different

different

Interpreters (such as python.exe) make it easier to run the same code on different machines

A compiler is another tool for running the same code on different CPUs

python code

machine code

Interpreters

CPU X

python.exe (X)

CPU Y

python.exe (Y)

program.py program.py
same

different

different

Interpreters (such as python.exe) make it easier to run the same code on different machines

python code

machine code

Discuss: if all CPUs had the instruction set,
would we still need a Python interpreter?

1 Hardware

2 Operating System

3 Dependencies

[this semester]

many others...

Big question: will my program run on someone else's computer?
 (not necessarily written in Python)

Things to match:

OS jobs: Allocate and Abstract Resources

1 Allocation 2 Abstraction

Operating System

f = open("file.txt")
data = f.read()
f.close()

ignorant of
files/directories

inconvenient

convenient

CPU X

Process A

Process B

Process Z

...waiting

running

only one process can run on CPU at a time
(or a few things if the CPU has multiple "cores")

OS decides

[like CPU, hard drive, etc]

Harder to reproduce on different OS...

CPU X

bad.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

f = open("/data/file.txt")
...

Harder to reproduce on different OS...

CPU X

good.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

f = open("c:\data\file.txt")
...

Harder to reproduce on different OS...

CPU X

good.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

solution 1:
f = open(os.path.join("data", "file.txt"))
...

solution 2:
tell anybody reproducing your results to use the same OS!

tradeoffs?

VMs (Virtual Machines) popular virtual
machine software

Physical Machine
[CPU, memory, etc]

Mac Operating System

Virtual Machine Virtual Machine

Mac OS X
Programs

programs

Linux OS Windows OS

programs programs

With the right virtual machines created and operating systems installed, you could
run programs for Mac, Linux, and Windows -- at the same time without

rebooting!

The Cloud
popular cloud providers

cloud providers let you rent VMs
in the cloud on hourly basis

(e.g., $15 / month)

VM VM VM VM

ssh session>

remote
connection

we'll use GCP virtual
machines this semester

[setup in lab]

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

ssh user@best-linux.cs.wisc.edu
run in

PowerShell/bash to
access CS lab

Linux
here

Windows, Mac,
whatever

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

Big question: will my program run on someone else's computer?

Things to match:

1 Hardware

2 Operating System

3 Dependencies

Lecture Recap: Reproducibility

we'll use Ubuntu Linux on
virtual machines in the cloud

a program must fit the CPU;
python.exe will do this, so
program.py won't have to

today: versioning

Recap of 15 new terms
reproducibility: others can run our analysis code and get same results
process: a running program
byte: integer between 0 and 255
address space: a big "list" of bytes, per process, for all state
address: index in the big list
encoding: pairing of letters characters with numeric codes
CPU: chip that executes instructions, tracks position in code
instruction set: pairing of CPU instructions/ops with numeric codes
operating system: software that allocates+abstracts resources
resource: time on CPU, space in memory, space on SSD, etc
allocation: the giving of a resource to a process
abstraction: hiding inconvenient details with something easier to use
virtual machine: "fake" machine running on real physical machine
virtual machine: allows us to run additional operating systems
cloud: place where you can rent virtual machines and other services
ssh: secure shell -- tool that lets you remotely access another machine

[320] Version Control (git)
Yiyin Shen

Big question: will my program run on someone else's computer?

Things to match:

1 Hardware

2 Operating System

3 Dependencies

Reproducibility

we'll use Ubuntu Linux on
virtual machines in the cloud

a program must fit the CPU;
python.exe will do this, so
program.py won't have to

today: versioning

Dependency Versions

program.py

import os, sys, json
import pandas

import pandas

print("Pandas Version:", pandas.__version__)

code that uses pandas

behavior depends on which release was installed

this program "depends" on pandas

you can check a
module version

pip install pandas

pip install pandas==0.25.1

pip install pandas==0.24.0

or

or

or...

Versioning: motivation and basic concepts

Many tools auto-track history (e.g., Google Docs)

https://zapier.com/apps/google-docs/tutorials/google-docs-revision-history

what
changed

when
it changed

who
changed it

https://zapier.com/apps/google-docs/tutorials/google-docs-revision-history

Version Control Systems (VCS)
Useful for many kinds of projects
• code, papers, websites, etc
• manages all files for same project (maybe thousands) in a repository

Explicit snapshots/checkpoints, called commits
• users manually run commands to preserve good versions

Explicit commit messages
• who, what, when, why

Work can branch out and be merged back
• people can work offline
• can get feedback before merging
• humans need to resolve conflicts

when versions being merged are
too different

partner B also
working on hw.py,

without wifi

partner A working
on hw.py at school

what happens when the plane lands?

Example

time

print("hi")

hello.py
print("hello")
print("world")

hello.py
import dog
dog.bark()

hello.py

def bark():
 print("bark"*10)

dog.py

add file edit file edit+add

commits:

at any point in time,
you just see one version

of the files on your computer

Use case 1: troubleshooting discovered bug

time

commit 1
msg: first version
author: Yiyin

commit 2
msg: upgrade light
author: Yiyin

commit 3
msg: save energy
author: Victor

bug introduced
along with feature

somebody notices
bug after commit 3

who will get blamed?

Use case 1: troubleshooting discovered bug

time

commit 1
msg: first version
author: Yiyin

commit 2
msg: upgrade light
author: Yiyin

commit 3
msg: save energy
author: Victor

bug introduced
along with feature

somebody notices
bug after commit 3

test.py: test.py: test.py:

Use case 1: troubleshooting discovered bug

time

commit 1
msg: first version
author: Yiyin

commit 2
msg: upgrade light
author: Yiyin

commit 3
msg: save energy
author: Victor

test.py: test.py: test.py:

commit 4
msg: oops, my bad!
author: Yiyin

test.py:

Use case 2: versioned releases

time

1 2 3 4 5 6 7 8

which version would you use?

Use case 2: versioned releases

time

1 2 3 4 5 6 7 8

v1.0 v2.0 v2.1 v2.2

tag "good" commits to create releases

https://pypi.org/project/pandas/#history

https://github.com/pandas-dev/pandas/releases

https://pypi.org/project/pandas/
https://github.com/pandas-dev/pandas/releases

Use case 2: versioned releases

1 2 3 4 5a 6 7 8

v1.0 v2.0 v2.25b

v2.1

it's possible to branch out,
with some people adding features

(5a) and others debugging (5b)

Use case 3: feedback

main branch
of code

developer’s personal branch
with experimental feature

Use case 3: feedback

main branch
of code

developer’s personal branch
with experimental feature

can I merge my
code back to

the main branch?

git

Version Control System Tools

svn

git

Mercurial

TeamFoundation

tools

GitLab

BitBucket

GitHub:

git providers

Linus Torvalds
developed git to manage
Linux as a
BitKeeper replacement

signup for a free account for
Thursday’s lab
- do choose a name that

won't embarrass you on
a resume

- do not post course work

https://www.linuxjournal.com/content/25-years-later-interview-linus-torvalds

https://www.linuxjournal.com/content/25-years-later-interview-linus-torvalds

Git Demos

https://github.com/yiyins2/CS320-SU23/tree/main
https://github.com/yiyins2/CS320-SU23-lecture-notes

Connect to VM:
• Mac: terminal; Windows: powershell
• ssh username@computer: connect to a VM via SSH

Shortcuts:
• ^D exit connection
• ^C terminate the current command
• ^R search history

• pwd display current working directly
• cd go down a directory
• cd .. go up a directory
• ls list all files in the directory
• cat display the files

https://github.com/yiyins2/CS320-SU23/tree/main
https://github.com/yiyins2/CS320-SU23-lecture-notes

Git Demos

Git Commands:
• git clone: retrieve an entire repository from a hosted location via URL
• git log: show all commits in the current branch’s history
• git status: show modified files in working directory, staged for your next commit
• git pull: fetch and merge any commits from the tracking remote branch
• git add: add a file as it looks now to your next commit (stage)
• git commit: commit your staged content as a new commit snapshot
• git push: transmit local branch commits to the remote repository branch
• git branch: list your branches. a * will appear next to the currently active branch
• git checkout: switch to another branch and check it out into your working directory

https://github.com/yiyins2/CS320-SU23/tree/main
https://github.com/yiyins2/CS320-SU23-lecture-notes

https://github.com/yiyins2/CS320-SU23/tree/main
https://github.com/yiyins2/CS320-SU23-lecture-notes

HEAD, Branches, and Tags

Remembering commit numbers is a pain! Various kinds of
labels can serve as easy-to-remember aliases

HEAD

intern [branch]

main [branch]

experiment [branch]

v1.0 [tag] v2.0 [tag] v2.1 [tag]

HEAD: wherever you currently are (only one of these)
tag: label tied to a specific commit number
branch: label tied to end of chain (moves upon new commits)

