Worksheet: Complexity Analysis

```
def search(L, target):
    for x in L:
        if x == target: #line A
            return True
    return False assume this is asked
        unless otherwise stated
```

 Let \(f(N)\) be the number of times line A executes, with
 \(N=\) len (L). What is \(f(N)\) in each case?
 Worst Case (target is at end of list): \(\quad f(N)=N \in O(N)\)
 Best Case (target is at beginning of list): \(f(N)=\perp \in O(1)\)
 Average Case (target in middle of list): \(f(N)=N / 2 \in O(N)\)
 Let $f(N)$ be the number of times line A executes, with $N=\operatorname{len}(L)$. What is $f(N)$ in each case?

Worst Case (target is at end of list): $\quad f(N)=N \in O(N)$
Best Case (target is at beginning of list): $f(N)=\perp \in D(1)$
Average Case (target in middle of list): $f(N)=N / 2 \in O(N)$

A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size).
We classify algorithm complexity by classifying the order of growth of a function $f(N)$, where f gives the number of steps the algorithm must perform for a given input size.

Big O definition: if $f(N) \leq C * g(N)$ for large N values and some fixed constant C, then $f(N) \in O(g(N))$

```
nums = [...]
```

 first100sum \(=0\)
 for x in mums [:100]:
 first100sum \(+=\mathrm{x}\)
 print(first100sum)

If we want to show $f(N) \in O\left(N^{3}\right)$, what is a good lower bound on N ? Let's have $C=1$. $N \geq 4$
To show $f(N) \in O\left(N^{2}\right)$, do we pick 1, 2 , o, 4 for the C? After picking C, what should we choose for N's lower bound?

$$
N \geqslant 3
$$

What is more informative to show?
$f(N) \in O\left(N^{3}\right)$ or $f(N) \in O\left(N^{2}\right)$
tighter
upper bound
Somebody claims $f(N) \in O(N)$, offering $C=30$ and $N>0$. Suggest an N value to disprove Propose N (data size) counter their claim.

If we increase the size of nums from 20 items to 100 items, the code will probably take \qquad times longer to run.
$C=110$
If we increase the size of nums from 100 to 1000 , will the code take longer? Yes No
The complexity of the code is $\mathrm{O}($ \qquad), with $\mathrm{N}=$ len(nums).

Each of the following list operations are either $\mathrm{O}(1)$ or $\mathrm{O}(\mathrm{N})$, where N is len (L). Circle those you think are $\mathrm{O}(\mathrm{N})$,

$$
L=[\ldots]
$$

$(N+1) \cdot N$
for x in $L: N+1$
if $x>2$ *avg: print("outlier", x)
$\xrightarrow[\text { Is there a way to optimize the code? }]{\longrightarrow}$
(6) $A=[\ldots] \operatorname{len}(A)=M$
$B=[\cdots] \operatorname{len}(B)=N$
for x in $A: M+1$ for y in $B: N \neq 1$ print (x*y)
how would you define the variables) to describe the size of the input data?

The complexity of code is
$(M+1)(N+1) \Rightarrow 0(M N)$

7 \# assume L is already sorted, $N=\operatorname{len}(L)$
def binary_search(L, target):
left_idx $=0$ \# inclusive right_idx $=$ len (L) \# exclusive while right_idx - left_idx > 1: mid_idx = (right_idx + left_idx) // 2 mid $=$ L[mid_idx] if target $>=$ mid: left_idx = mid_idx else:
right_idx = mid_idx
how many times does this step run when $\mathrm{N}=1 ? \mathrm{~N}=2 ? \mathrm{~N}=4 ? \mathrm{~N}=8$?

If $f(N)$ is the number of times this step runs, then $f(N)=$ \qquad
The complexity of binary search is
\qquad
return right_idx > left_idx and L[left_idx] == target

8
si = tuple("...") \# could be any string len $\left(S_{1}\right)=\mathbb{N}$ $s 2=$ tuple("...") $\quad \operatorname{len}\left(s_{2}\right)=N$ Ex. $S_{1}=\left(=A^{\prime \prime}{ }^{*} B^{\prime \prime}\right.$. $\left.C^{\prime \prime}\right)$

\# version A permutations of S_{1}

 import itertools

\# version B

$A B C B C A$
 matches = False $\quad \begin{array}{ll}A C B C A B & N-1 \text { choices }\end{array}$

N ! for p in itertools.permutations(s1): N-2
N if $p==s 2:$
matches $=$ True $\quad N_{*}(N-1) *(N-2) * \cdots * 2 *$ assumed sorted is $O(N \log N)$ merge sort
quick sort choices in total
what is the complexity of version A ? $O(N * N$! $)$ what is the complexity of version B ? $\mathrm{O}\left(\mathrm{N}_{\log N}\right)$
(9) def selection_sort(L):

9 for i in range(len(L)): if this runs $f(N)$ times, where $N=\operatorname{len}(L)$, idx_min $=$ i for j in range (i, len (L)): if $L[j]<L[i d x$ min]: idx_min $=j$
\# swap values at i and idx_min L[idx_min], Li] = Li], L[idx_min]

$$
\text { then } f(N)=N+(N-1)+(N-2)+\ldots+2+1+0
$$

The complexity of selection sort is

numb $=[2,4,3,1]$
 selection_sort(nums) print(nums)

