
A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size).

We classify algorithm complexity by classifying the order of growth of a function f(N), where f gives the number of
steps the algorithm must perform for a given input size.

Big O definition: if f(N) ≤ C * g(N) for large N values and some fixed constant C, then f(N) ∈ O(g(N))

2
Let f(N) = 2N2 + N + 12

If we want to show f(N) ∈ O(N3), what is a
good lower bound on N? Let's have C=1.

To show f(N) ∈ O(N2), do we pick 1, 2, or 4
for the C? After picking C, what should we
choose for N's lower bound?

What is more informative to show?
f(N) ∈ O(N3) or f(N) ∈ O(N2)?

Somebody claims f(N) ∈ O(N), offering
C=30 and N>0. Suggest an N value to
counter their claim.

def search(L, target):
 for x in L:
 if x == target: #line A
 return True
 return False

Let f(N) be the number of times line A executes, with
N=len(L). What is f(N) in each case?
Worst Case (target is at end of list):
Best Case (target is at beginning of list):
Average Case (target in middle of list):

f(N) = _________.
f(N) = _________.
f(N) = _________assume this is asked

unless otherwise stated

1

1

Worksheet: Complexity Analysis

Each of the following list operations are either O(1) or O(N), where N is len(L). Circle those you think are O(N).

L.pop(-1)

L.pop(0)

L.append(x)

L.insert(0, x)

x = sum(L)

x = max(L)

L2.extend(L)

x = L[0]

found = X in L

x = len(L)4

3
nums = [...]

first100sum = 0

for x in nums[:100]:
 first100sum += x
print(first100sum)

If we increase the size of nums from 20 items to 100 items, the code
will probably take _______ times longer to run.

If we increase the size of nums from 100 to 1000, will the code take
longer? Yes / No

The complexity of the code is O(_____), with N=len(nums).

5

L = [...]
for x in L:
 avg = sum(L) / len(L)
 if x > 2*avg:
 print("outlier", x)

What is the big O complexity?

Is there a way to optimize the code?

NEOCN

hidden

N24
O

N 3

Effbound

2N NEELEY 1 1 0 800 20 12 60

5

steps

9ÉÉ
O

fin

100 N
s

00080
NH N

INN LOCND

7 # assume L is already sorted, N=len(L)
def binary_search(L, target):
 left_idx = 0 # inclusive
 right_idx = len(L) # exclusive
 while right_idx - left_idx > 1:
 mid_idx = (right_idx + left_idx) // 2
 mid = L[mid_idx]
 if target >= mid:
 left_idx = mid_idx
 else:
 right_idx = mid_idx

 return right_idx > left_idx and L[left_idx] == target

how many times does this step run
when N = 1? N = 2? N = 4? N = 8?

If f(N) is the number of times this step
runs, then f(N) = _____________

The complexity of binary search is
O(____________)

2

9
def selection_sort(L):
 for i in range(len(L)):
 idx_min = i
 for j in range(i, len(L)):
 if L[j] < L[idx_min]:
 idx_min = j
 # swap values at i and idx_min
 L[idx_min], L[i] = L[i], L[idx_min]

nums = [2, 4, 3, 1]
selection_sort(nums)
print(nums)

if this runs f(N) times, where N=len(L),

then f(N) = _____________________

The complexity of selection sort is
O(____________)

6 A = [...]
B = [...]

for x in A:
 for y in B:
 print(x*y)

how would you define the variable(s) to describe the
size of the input data?

The complexity of code is
O(____________)

version A
import itertools

matches = False
for p in itertools.permutations(s1):
 if p == s2:
 matches = True

version B
s1 = sorted(s1)
s2 = sorted(s2)
matches = (s1 == s2)

s1 = tuple("...") # could be any string
s2 = tuple("...")

what is the complexity of version A? O(____________)
what is the complexity of version B? O(____________)

assumed sorted is O(N log N)

8

lenca M
Ien B D
MANY

MYCNtD MN

tents N
tents N

EX Si FA B C
permutationscts I

NiogNABC BCA NahidABE ABBA Nlognn

N
N

N 2

NAIN1 N2 2 1 mergesort
quicksort

choicesintotal
NAN
NIGN

i titemsfortheinnerforloop
O N
I Ny Addingtogether

L NHN1TENAt it TO

NY
visualize it

N l
N i

10921 0 log 2 1 2 3

logan

logN

idk 0 I 2 3 4 5 6 7 8

8 14 24 26 50 55 66 97 target 55

Theft idk Imid idx fright id

step 0 10487112 4 8

logansteps 4 1487112 6 8

41511126

