13201 S

heclal Methoc

Yiyin Shen

Classes

class Dog: which one is an attribute?
def init(dog): . dog
print("created a dog") 2. name
dog.name = name 3. mult
dog.age = age 4. fido

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog()

Classes

class Dog:
def init(dog):
print("created a dog") is this printed! do we crash!?
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog()

Classes

class Dog:
def 1init (dog, name, age):
print ("created a dog") is this printed? do we crash!?
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

rspeak(fido, 5) # |
fido.speak(5) H?2 . | :
Dog.speak(fido, 5) 3 — which call won't work!
Ltype(fido).speak(fido, 5) #4

Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

lspeakffide, 5) H |
Ldo. #2 | |
;égos;z:i]({géo 5) 43 — which call won't work?
* ’
type(fido).speak(fido, 5) #4

Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

-speak{fido;—5) H-
' fido.speak(5) # 2

Dog.speak(fido, 5) #3 > which one is NOT an example
type(fido).speak(fido, 5) #4 of type-based dispatch?

Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

—speak{fideo;—5) H

' fido.speak(5) # 2

Dog-speak{fidoe,—5) &3 > which one is NOT an example
type(fido).speak(fido, 5) #4 of type-based dispatch?

Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

-speak(fido;—5) H
' fido.speak(5) # 2
Dog.speak{fido,—5) H = which call style is preferred?
type(fido).speak(fido, 5) #4

Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5) preferred style

Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name

dog.age = y what will be passed to the dog param?

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5)

Classes

what is a better name for
the receiver parameter?

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5)

Classes

what is a better name for
the receiver parameter?

class Dog: answer: se LT
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5)

Special Methods

Special Methods
__init___1s a special method,

with non-standard behavior
class Dog:

def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5)

Special Methods

There are MANY special method names:
https://docs.python.org/3/reference/datamodel.html#special-method-names

We'll learn a few:

_str , repr , repr html

_eq , 1t control how an object looks when
we print it or see it in Out[N]

| generate HITML to create more

_len , _ getitem _ visual representations of objects in
Jupyter. Like tables for
DataFrames

enter , exlt

https://docs.python.org/3/reference/datamodel.html

Special Methods

There are MANY special method names:
https://docs.python.org/3/reference/datamodel.html#special-method-names

We'll learn a few:

str , repr , repr html

eq , 1t — define how == behaves for two
different objects

define how a list of objects should
len , getitem be sorted

c = (a==b) # type of c?

https://docs.python.org/3/reference/datamodel.html

Special Methods

There are MANY special method names:
https://docs.python.org/3/reference/datamodel.html#special-method-names

We'll learn a few:

str , repr , repr html

. build our own sequences that we
len , getitem . .
— — — — index, slice, and loop over:

T
val = obj[idx] what goes
vals = obj[3:7] in brackets?
o - — for x in obj:
print (x)

https://docs.python.org/3/reference/datamodel.html

Special Methods

There are MANY special method names:
https://docs.python.org/3/reference/datamodel.html#special-method-names

We'll learn a few:

_str , repr , repr html
eq , 1t
len , getitem

context managers

with open("file.txt") as f:

enter , ex1lt data = f.read()
automatically close

https://docs.python.org/3/reference/datamodel.html

